圆、圆环的面积典型例题及答案.pdf
《圆、圆环的面积典型例题及答案.pdf》由会员分享,可在线阅读,更多相关《圆、圆环的面积典型例题及答案.pdf(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 1 圆、圆环的面积 答案 典题探究 例 1环形面积等于外圆面积减去内圆面积 (判断对错)考点:圆、圆环的面积 专题:平面图形的认识与计算 分析:根据环形面积公式:环形面积=外圆面积内圆面积,据此即可解答 解答:解:根据圆环的面积公式可得:环形面积等于外圆面积减去内圆面积 故答案为:点评:此题考查圆环的面积公式 例 2在一个正方形里画一个最大的圆,圆的面积约占正方形面积的 78.5%(判断对错)考点:圆、圆环的面积;百分数的实际应用 专题:分数百分数应用题;平面图形的认识与计算 分析:这道题中没有具体说明正方形的边长或圆的直径是多少,因此解答时可以采用“假设法”,在这里我把正方形的边长假设为
2、4 厘米,由于圆的直径也就是正方形的边长,因此圆的直径也是 4 厘米,根据这些条件和正方形的面积公式以及圆的面积公式,算出圆和正方形的面积,再用圆的面积除以正方形的面积算出答案 解答:解:假设这个正方形的边长是 4 厘米,则这个圆的直径也是 4 厘米 正方形的面积 S=a2=44=16(平方厘米)圆的面积 S=r2=(42)2=4 41678.5%故答案为:点评:像这样类型的题,没有告诉具体的数字时,用假设法(举例子)比较简便;如果是求比值,圆的面积可以直接用含有 的式子表示 例 3如右图,如果平行四边形的面积是 8 平方米,那么圆的面积是 12.56 平方米 考点:圆、圆环的面积 专题:平面
3、图形的认识与计算 分析:因为平行四边形的面积是 BCOD,而 BC=2OD,所以平行四边形的面积=2OD2,由此求出 OD2;圆的面积是 OD2,由此求出圆的面积 2 解答:解:OD2=82=4(平方米),圆的面积:3.144=12.56(平方米),答:圆的面积是 12.56 平方米;故答案为:12.56 点评:关键是利用平行四边形的面积公式结合题意求出 OD2,进而求出圆的面积 例 4一个面积 30 平方厘米的正方形中有一个最大的圆,求该圆的面积是 23.55 平方厘米(取 3.14)考点:圆、圆环的面积 专题:平面图形的认识与计算 分析:正方形内最大的圆的直径等于这个正方形的边长,设这个圆
4、的半径为 r 厘米,则正方形的边长就是 2r,根据正方形的面积是 30 平方厘米可得:2r2r=30,整理可得:r2=7.5,把它代入到圆的面积公式中即可求出这个最大圆的面积 解答:解:设这个圆的半径为 r 厘米,则正方形的边长就是 2r,根据正方形的面积是 30 平方厘米可得:2r2r=30,整理可得:r2=7.5,所以圆的面积是:3.147.5=23.55(平方厘米),答:圆的面积是 23.55 平方厘米 故答案为:23.55 点评:此题考查了正方形内最大圆的直径等于正方形的边长,此题关键是利用 r2的值,等量代换求出圆的面积 例 5圆环的宽是 1cm,外圆的周长是 15.7cm,计算这个
5、圆环的面积 考点:圆、圆环的面积 专题:压轴题;平面图形的认识与计算 分析:先根据圆的周长公式求得外圆的半径,再分别求出大小圆的面积,然后用大圆面积减去小圆面积即可 解答:解:15.73.142,3=52,=2.5(cm);2.51=1.5(cm);3.14(2.521.52),=3.14(6.252.25),=3.144,=12.56(cm2);答:这个圆环的面积是 12.56cm2 点评:考查了圆环的面积计算,本题的关键是根据圆的周长公式求得内圆和外圆的半径 例 6小方桌的边长是 1 米,把它的四边撑开就成了一张圆桌(如图)求圆桌的面积 考点:圆、圆环的面积 专题:压轴题 分析:如图,连接
6、正方形的对角线,把正方形平均分成了 4 个等腰直角三角形,且每一条直角边都是圆的半径;一个等腰直角三角形的面积就是正方形面积的,由于正方形的面积是 11=1 平方米,所以一个等腰直角三角形的面积就是 平方米,即 r22=,可求得 r2是,进而求得圆桌的面积 解答:解:连接正方形的对角线,把正方形平均分成了 4 个等腰直角三角形,如下图:每一条直角边都是圆的半径;4 正方形的面积:11=1(平方米),小等腰直角三角形的面积就是 平方米,即:r22=,r2=;圆桌的面积:3.14r2=3.14=1.57(平方米);答:圆桌的面积是 1.57 平方米 点评:解答此题要明确正方形的对角线长为圆的直径,
7、利用等腰直角三角形的面积公式得到r2是,从而解决问题 演练方阵 A 档(巩固专练)一选择题(共 15 小题)1(宁晋县模拟)一个圆的直径扩大 3 倍,那么它的面积扩大()倍 A 3 B 6 C 9 D 8 考点:圆、圆环的面积 分析:这道题中圆的直径没有具体说明是几,如果单纯的去算不好算,因此可以采用“假设法”,也就是举例子,在这里我把原来的直径看做 2,则扩大后的直径就是(23),再根据圆的面积公式分别算出它们的面积,最后用除法算出答案即可 解答:解:假设这个圆原来的直径是 2 厘米,则扩大后是 6 厘米 原来圆的面积 S=r2=3.14(22)2=3.14(平方厘米)扩大后圆的面积 S=r
8、2=3.14(62)2=28.26(平方厘米)28.263.14=9 故选 C 点评:(1)求一个数是另一个数的多少倍,用除法计算;(2)当一个圆的直径(或半径)扩大 a 倍时,它的面积就扩大 a2倍 2(中宁县模拟)量得一根圆木的横截面周长是50.24厘米,这根圆木的横截面面积是()平方厘米 A 200.96 B 200.69 C 50.24 D 188.4 考点:圆、圆环的面积 专题:平面图形的认识与计算 分析:根据题意,可用圆的周长公式 C=2r 计算出圆木的半径,然后再利用圆的面积公式进行计算即可得到答案 解答:解:圆木的半径为:50.243.142=8(厘米),圆木的横截面为:3.1
9、482=200.96(平方厘米),答:圆木横截面的面积是 200.96 平方厘米 故选:A 点评:此题主要考查的是圆的周长公式和圆的面积公式的灵活应用 5 3两个圆的直径比是 8:6,则它们的面积比是()A 4:3 B 8:6 C 16:9 D 6:8 考点:圆、圆环的面积;比的应用 分析:两圆的直径比是 8:6,则两圆的半径比也为 8:6,而圆的面积比等于半径的平方比,按此计算后选出即可 解答:解:由两圆的直径比是 8:6,可得两圆的半径比也为 8:6=4:3,而圆的面积比等于半径的平方比,所以它们的面积比是 42:32=16:9 故选:C 点评:此题关键是知道圆的面积比等于半径的平方比这一
10、知识点 也可以设两圆的直径分别是 4 和 3,然后计算它们的面积后相比 4小圆直径 3cm,大圆直径 6cm,小圆面积和大圆面积的比是()A 1:1 B 1:2 C 1:9 D 1:4 考点:圆、圆环的面积;比的意义 专题:平面图形的认识与计算 分析:根据圆的面积公式可知,圆的面积之比等于它们的半径的平方的比,由此先求它们的半径的平方的比,即可解答问题 解答:解:因为小圆直径 3cm,大圆直径 6cm,所以小圆与大圆的半径之比是:(32):(62)=3:6=1:2,所以小圆面积和大圆面积的比是 1:4 故选:D 点评:圆的面积之比等于半径的平方比,由此即可解答 5小圆直径恰好等于大圆半径,大圆
11、面积是小圆面积的()倍 A 2 B 3.14 C 4 考点:圆、圆环的面积 专题:平面图形的认识与计算 分析:大圆的半径等于小圆直径,即大圆的半径是小圆的半径的 2 倍;设小圆的半径为 r,则大圆的半径就是 2r,利用圆的面积公式即可分别求得大小圆的面积的倍数关系 解答:解:设小圆的半径为 r,则大圆的半径就是 2r,大圆的面积为:(2r)2=4r2,小圆的面积为:r2,所以大圆的面积是小圆的面积的 4 倍 故选:C 点评:此类问题可以把小圆与大圆的半径分别用相应的数字或字母代替,然后利用圆的面积公式分别表示出大圆与小圆的面积进行解答 6(2003重庆)两个圆的周长相等,它们的面积()A 不相
12、等 B 相等 C 无法比较 D 无选项 6 考点:圆、圆环的面积;圆、圆环的周长 分析:根据圆的周长公式、面积公式与半径的关系,可以得出结论 解答:解:根据圆的周长公式:C=2r,可以得出两个圆周长相等,则它们的半径就相等;再根据圆的面积公式:S=r2,半径相等则面积就相等 故选:B 点评:此题考查了圆的周长和面积公式的灵活应用 7(东莞模拟)大圆半径与小圆半径的比是 5:4,大圆面积与小圆面积的比是()A 5:4 B 25:16 C 16:25 考点:圆、圆环的面积;比的意义 分析:根据圆的面积比=圆的半径平方的比即可求解 解答:解:因为大圆半径与小圆半径的比是 5:4,所以大圆面积与小圆面
13、积的比是 25:16 故选:B 点评:考查了圆的面积和正比例的应用,本题的关键是理解圆的面积比等于圆的半径平方的比 8(湛江模拟)两个圆的半径比是 1:2,它们的面积比是()A 1:2 B 1:4 C 1:8 考点:圆、圆环的面积 分析:根据圆的面积公式,S=r2,知道圆的半径的平方和圆的面积成正比例,由此即可得出答案 解答:解:因为,S=r2,所以,=(一定),即,半径比是:1;2,面积的比是:1:4,故选:B 点评:解答此题的关键是,先根据圆的面积公式,判断圆的面积与半径的关系,再根据正比例的意义,即可得出答案 9(恭城县)圆的半径扩大 3 倍,面积扩大()倍 A 3 B 6 C 9 D
14、12 考点:圆、圆环的面积 分析:设圆的半径为 r,则扩大 3 倍后圆的半径为 3r,由此利用圆的面积公式即可求得它们的面积进行比较即可 解答:解:设圆的半径为 r,则圆的面积=r2,若半径扩大 3 倍,则圆的面积为:(3r)2=9r2,所以半径扩大 3 倍后,圆的面积就扩大了 9 倍,故选:C 点评:此题考查了圆的面积公式的灵活应用,可以得出的结论是:半径扩大几倍,圆的面积 7 就扩大几的平方倍 10(于都县模拟)圆的半径扩大 2 倍,它的面积扩大()倍 A 2 B 4 C 8 考点:圆、圆环的面积 分析:根据题意,假设圆的半径是 1,扩大 2 倍就是 12=2,再根据圆的面积公式求解即可
15、解答:解:假设圆的半径是 1,扩大 2 倍后的半径是:12=2,由圆的面积公式可得:原来圆的面积是:12=,扩大后的面积是:22=4,4=4,所以,它的面积扩大 4 倍 故选:B 点评:根据圆的面积公式与半径的关系,进行求解即可 11(临川区)一个大圆的半径恰好是一个小圆的直径,这个小圆的面积是大圆面积的()A B 3.14 C D 考点:圆、圆环的面积 分析:大圆的半径恰好等于小圆的直径,则说明大圆的半径是小圆的半径的 2 倍,由此即可进行解答 解答:解:根据题意,假设大圆的半径是 2,那么小圆的直径也是 2,小圆的半径就是 22=1,由圆的面积公式可知:大圆的面积是:22=4,小圆的面积是
16、:12=,则小圆面积是大圆面积的:(4)=故选:C 点评:根据题意,用赋值法求出大小圆的半径,再根据圆的面积公式求解即可 12(张掖模拟)小圆的半径是 2 厘米,大圆的半径是 3 厘米,大圆面积与小圆面积的比是()A 4:9 B 2:3 C 3:2 D 9:4 考点:圆、圆环的面积 分析:要求大圆面积与小圆面积的比,首先要分析“小圆的半径是 2 厘米,大圆的半径是 3厘米”这两个条件,根据圆的面积公式分别用 表示出它们的面积,再根据比的意义和比的性质算出答案 解答:解:大圆的面积 S=r2=32=9 小圆的面积 S=r2=22=4 大圆的面积:小圆的面积=9:4=9:4 故答案选 D 点评:当
17、求两个圆的面积比时,面积可以用 表示 13(广州模拟)一个圆的直径增加 2 倍后,面积是原来的()A 9 倍 B 8 倍 C 4 倍 D 2 倍 8 考点:圆、圆环的面积 专题:平面图形的认识与计算 分析:根据圆的面积公式:s=r2,再根据因数与积的变化规律,圆的直径增加 2 倍,也就是圆的直径扩大 3 倍,圆的半径也扩大 3 倍,圆的面积就扩大 3 的平方倍,据此解答 解答:解:圆的直径增加 2 倍,也就是圆的直径扩大 3 倍,圆的半径也扩大 3 倍,圆的面积就扩大 33=9 倍 答:面积是原来的 9 倍 故选:A 点评:此题主要根据圆的面积公式以及因数与积的变化规律进行解答 14一个圆和一
18、个正方形的周长都是 12.56 分米,它们的面积比较,()A 一样大 B 正方形大 C 圆面积大 D 不能比较 考点:圆、圆环的面积;正方形的周长;圆、圆环的周长;长方形、正方形的面积 分析:首先分析条件“一个圆和一个正方形的周长都是 12.56 分米“,根据正方形的周长和圆的周长公式,算出正方形的边长和圆的半径,再根据圆的面积公式和正方形的面积公式算出它们的面积,最后比较它们的大小 解答:解:正方形的边长=12.564=3.14(分米),正方形的面积=3.143.14=9.8596(平方分米);圆的半径 r=C2=12.56(23.14)=2(分米),圆的面积 S=r2=3.1422=12.
19、56(平方分米);因为 9.859612.56,所以正方形的面积圆的面积 故选 C 点评:本题的结论可以记住,当长方形、正方形和圆形的周长都相等时,圆的面积最大 15(攀枝花)小圆的直径是 5cm,大圆的半径是 5cm,小圆的面积是大圆面积的()A B C D 考点:圆、圆环的面积;分数除法 专题:压轴题;平面图形的认识与计算 分析:根据圆的面积公式:s=r2,求出大小圆的面积,再根据分数的意义求解即可 解答:解:小圆的面积是:()2=;大圆的面积是:52=25;由分数的意义可知,(25)=故选:B 点评:本题主要考查圆的面积,根据圆的面积公式求出大小圆的面积,再根据分数的意义解答即可 二填空
20、题(共 13 小题)9 16(慈溪市)有两个圆,它们的面积之和为 1991 平方厘米,小圆的周长是大圆周长的 90%,问大圆面积是 1100 平方厘米 考点:圆、圆环的面积;百分数的实际应用 专题:分数百分数应用题;平面图形的认识与计算 分析:根据圆的周长公式 C=2r 与“小圆的周长是大圆周长的 90%,”得出小圆的半径是大圆半径的 90%,再根据圆的面积公式 S=r2,得出小圆的面积是大圆面积的(90%)2=;由此设出大圆的面积为 x 平方厘米,则小圆的面积为 x 平方厘米,再根据它们的面积之和为 1991 平方厘米,列出方程求出大圆的面积 解答:解:设大圆的面积为 x 平方厘米,则小圆的
21、面积为(90%)2=x 平方厘米,x+x=1991,x=1991,x=1991,x=1100,答:大圆的面积是 1100 平方厘米;故答案为:1100 点评:灵活利用圆的周长公式和面积公式得出小圆的面积是大圆面积的百分之几(或几分之几)是解答此题的关键;再利用数量关系等式列方程解决问题 17(富源县模拟)两个圆半径比是 2:1 则小圆的面积是大圆面积的 考点:圆、圆环的面积;比的意义 专题:平面图形的认识与计算 分析:由条件“两个圆半径比是 2:1”可知,大圆的半径是小圆半径的 2 倍,原题中没有告诉半径是多少,因此可以用假设法解答;设大圆的半径为一个数,再根据条件得出小圆的半径,利用圆面积公
22、式求得各自的面积后再相除即可 解答:解:假设大圆的半径是 2 厘米,则小圆的半径是 1 厘米 大圆的面积:S=r2=3.1422=12.56(平方厘米);小圆的面积:S=r2=3.1412=3.14(平方厘米);3.1412.56=;答:小圆的面积是大圆面积的 故答案为:点评:当知道大圆的直径(或半径)是小圆的直径(或半径)的 n 倍时,则大圆的面积是小圆面积的 n2倍 18(黄冈模拟)半径为 r 的圆的面积是边长为 r 的正方形面 倍 (判断对错)1 0 考点:圆、圆环的面积;长方形、正方形的面积 专题:平面图形的认识与计算 分析:利用圆的半径与正方形的边长相等,分别表示出圆和正方形的面积,
23、再求圆的面积是正方形的面积的几倍,用除法计算即可 解答:解:设圆的半径为 r,则正方形的面积=rr=r2,圆的面积=r2,所以 r2r2=倍 故答案为:点评:解答此题的关键是:先利用已知条件表示出二者的面积,再根据求一个数是另一个数的几倍,用除法求解 19圆的直径越长,圆的面积也就越大 (判断对错)考点:圆、圆环的面积 专题:平面图形的认识与计算 分析:根据“圆心决定圆的位置,半径决定圆的大小”可知:直径越大,半径越大,所画的圆越大;据此判断 解答:解:直径越大,则半径越大,根据“圆心决定圆的位置,半径决定圆的大小”可知:直径越长,所得的圆越大;故答案为:点评:此题考查了圆的基础知识,应注意理
24、解和灵活运用 20一个双面绣作品中间部分的画是一个直径是 20cm 的圆这幅画的面积是 314 cm2 考点:圆、圆环的面积 专题:平面图形的认识与计算 分析:由题意,要求这幅画的面积,即求是直径是 20cm 的圆得面积,根据 S=r2解答即可 解答:解:3.14(202)2=3.14100=314(cm2)答:这幅画的面积是 314cm2 故答案为:314 点评:本题考查了圆的面积公式的运用 21一个圆的周长是 62.8m,半径增加了 2m 后,面积增加了 138.16 平方米 考点:圆、圆环的面积 专题:平面图形的认识与计算 分析:先根据圆的半径=周长2 求出原来的半径:62.83.142
25、=10 米;增加后的半径是:10+2=12 米,然后根据圆的面积=r2,增加的面积=后来的面积原来的面积,代入数据即可解答 1 1 解答:解:62.83.142=202=10(米)10+2=12(米)3.141223.14102=3.1444=138.16(平方米)答:面积增加了 138.16 平方米 故答案为:138.16 平方米 点评:此题考查了圆的周长和面积公式的灵活应用,关键是求出原来的半径 22正方形的面积是 40 平方厘米,则它的外接圆的面积是 62.8 平方厘米 考点:圆、圆环的面积 专题:平面图形的认识与计算 分析:正方形的对角线就是它的外接圆的直径,由正方形的面积是 40 平
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆环 面积 典型 例题 答案
限制150内