2012高中数学第6课时-函数的单调性(1)(教师版)苏教版.pdf
《2012高中数学第6课时-函数的单调性(1)(教师版)苏教版.pdf》由会员分享,可在线阅读,更多相关《2012高中数学第6课时-函数的单调性(1)(教师版)苏教版.pdf(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第六课时 函数的单调性(1)【学习导航】知识网络 学习要求 1理解函数单调性概念;2掌握判断函数单调性的方法,会证明一些简单函数在某个区间上的单调性;3提高观察、抽象的能力;自学评价 1单调增函数的定义:一般地,设函数()yf x的定义域为A,区间IA 如果对于区间I内的任意两个值1x,2x,当12xx时,都有12()()f xf x,那么就说()yf x在区间I上是单调增 函数,I称为()yf x的单调 增 区间 注意:“任意”、“都有”等关键词;.单调性、单调区间是有区别的;2单调减函数的定义:一般地,设函数()yf x的定义域为A,区间IA 如果对于区间I内的任意两个值1x,2x,当12
2、xx时,都有 12()()f xf x,那么就说()yf x在区间I上是单调 减函数,I称为()yf x的单调 减 区间 3函数图像与单调性:函数在单调增区间上的图像是 上升 图像;而函数在其单调减区间上的图像是 下降 的图像。(填上升或下降)4函数单调性证明的步骤:(1)根据题意在区间上设12xx ;(2)比较12(),()f xf x大小 ;(3)下结论函数在某个区 间 上 是 单 调 增(或 减)函数 .【精典范例】证明函数单调性 求函数单调区间 函数单调性 单调性定义 单调区间定义 单调性与图像 一 根据函数图像写单调区间:例 1:画出下列函数图象,并写出单调区间 (1)22yx;(2
3、)1yx;(3)21,0()22,0 xxf xxx【解】(图略)()函数22yx 的单调增区间为(,0),单调减区间为(0,);()函 数1yx在(,0)和(0,)上分别单调减,即其有两个单调减区间分别是(,0)和(0,)()函数21,0()22,0 xxf xxx在实数集R上是减函数;二证明函数的单调性:例 2:求证:函数 f(x)=x3+1在区间(,+)上是单调减函数 证明:设 x1,x2R 且 x1x1,x22+x1x2+x120 所以 f(x1)f(x2)0 即 f(x1)f(x2)所以 f(x)在(,+)上递减 追踪训练一 1.函数111xy (C)()A在(1,)内单调递增()B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2012 高中数学 课时 函数 调性 教师版 苏教版
限制150内