最新2019版高考数学大一轮复习-第九章第5节-第1课时-椭圆及其标准方程教案-文-新人教A版.pdf
《最新2019版高考数学大一轮复习-第九章第5节-第1课时-椭圆及其标准方程教案-文-新人教A版.pdf》由会员分享,可在线阅读,更多相关《最新2019版高考数学大一轮复习-第九章第5节-第1课时-椭圆及其标准方程教案-文-新人教A版.pdf(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 最新 2019 版高考数学大一轮复习-第九章第 5 节-第 1 课时-椭圆及其标准方程教案-文-新人教 A 版 2 第 1 课时 椭圆及其标准方程 最新考纲 1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;2.掌握椭圆的定义、几何图形、标准方程及简单几何性质.知 识 梳 理 1.椭圆的定义 在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.其数学表达式:集合PM|MF1|MF2|2a,|F1F2|2c,其中a0,c0,且a,c为常数:(1)若ac,则集合P为椭圆;(2)若ac,则集合
2、P为线段;(3)若ac,则集合P为空集.2.椭圆的标准方程和几何性质 标准方程 x2a2y2b21(ab0)y2a2x2b21(ab0)3 图形 性质 范围 axa byb bxb aya 对称性 对称轴:坐标轴;对称中心:原点 顶点 A1(a,0),A2(a,0),B1(0,b),B2(0,b)A1(0,a),A2(0,a),B1(b,0),B2(b,0)轴 长轴A1A2的长为 2a;短轴B1B2的长为 2b 焦距|F1F2|2c 离心率 eca(0,1)a,b,c的关系 c2a2b2 常用结论与微点提醒 1.过椭圆的一个焦点且与长轴垂直的弦的长为2b2a,称为通径.4 2.椭圆离心率eca
3、a2b2a1b2a2.3.应用“点差法”时,要检验直线与圆锥曲线是否相交.诊 断 自 测 1.思考辨析(在括号内打“”或“”)(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)椭圆的离心率e越大,椭圆就越圆.()(3)方程mx2ny21(m0,n0,mn)表示的曲线是椭圆.()(4)x2a2y2b21(ab0)与y2a2x2b21(ab0)的焦距相同.()解析(1)由椭圆的定义知,当该常数大于|F1F2|时,其轨迹才是椭圆,而常数等于|F1F2|时,其轨迹为线段F1F2,常数小于|F1F2|时,不存在这样的图形.(2)因为ecaa2b2a1ba2,所以e越大,则ba
4、越小,椭圆就越扁.5 答案(1)(2)(3)(4)2.(2017浙江卷)椭圆x29y241 的离心率是()A.133 B.53 C.23 D.59 解析 由已知,a3,b2,则c 94 5,所以eca53.答案 B 3.(2018张家口调研)椭圆x216y2251的焦点坐标为()A.(3,0)B.(0,3)C.(9,0)D.(0,9)解析 根据椭圆方程可得焦点在y轴上,且c2a2b225169,c3,故焦点坐标为(0,3),故选 B.答案 B 4.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于12,则椭圆C的方程是()6 A.x23y241 B.x24y231 C.x24y221 D
5、.x24y231 解析 由题意知c1,eca12,所以a2,b2a2c23.故所求椭圆C的方程为x24y231.答案 D 5.(选修 11P42A6 改编)已知点P是椭圆x25y241 上y轴右侧的一点,且以点P及焦点F1,F2为顶点的三角形的面积等于 1,则点P的坐标为_.解析 设P(x,y),由题意知c2a2b2541,所以c1,则F1(1,0),F2(1,0),由题意可得点P到x轴的距离为 1,所以y1,把y1 代入x25y241,得x152,又x0,所 7 以x152,P点 坐 标 为152,1 或152,1.答案 152,1 或152,1 考点一 椭圆的定义及其应用【例 1】(1)(
6、选修 11P42A7 改编)如图,圆O的半径为定长r,A是圆O内一个定点,P是圆上任意一点,线段AP的垂直平分线l和半径OP相交于点Q,当点P在圆上运动时,点Q的轨迹是()A.椭圆 B.双曲线 C.抛物线 D.圆(2)椭圆x225y21上一点P到一个焦点的距离为2,则点P到另一个焦点的距离为()A.5 B.6 C.7 D.8 解析(1)连接QA.由已知得|QA|QP|.8 所以|QO|QA|QO|QP|OP|r.又因为点A在圆内,所以|OA|OP|,根据椭圆的定义,点Q的轨迹是以O,A为焦点,r为长轴长的椭圆.(2)由椭圆定义知点P到另一个焦点的距离是 1028.答案(1)A(2)D 规律方法
7、 1.椭圆定义的应用主要有:判定平面内动点的轨迹是否为椭圆、求椭圆的标准方程和离心率等.2.椭圆的定义式必须满足 2a|F1F2|.【训练 1】(1)设定点F1(0,3),F2(0,3),动点P满足条件|PF1|PF2|a9a(a0),则点P的轨迹是()A.椭圆 B.线段 C.不存在 D.椭圆或线段(2)与圆C1:(x3)2y21 外切,且与圆C2:(x3)2y281 内切的动圆圆心P的轨迹方程为_.9 解析(1)a9a2a9a6,当且仅当a9a,即a3 时取等号,当a3 时,|PF1|PF2|6|F1F2|,点P的轨迹是线段F1F2;当a0,且a3 时,|PF1|PF2|6|F1F2|,点P
8、的轨迹是椭圆.(2)设动圆的半径为r,圆心为P(x,y),则有|PC1|r1,|PC2|9r.所以|PC1|PC2|10|C1C2|,即P在以C1(3,0),C2(3,0)为焦点,长轴长为 10 的椭圆上,得点P的轨迹方程为x225y2161.答案(1)D(2)x225y2161 考点二 椭圆的标准方程【例 2】(1)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点32,52,(3,5),则椭圆的标准方程为_.10(2)(一题多解)过点(3,5),且与椭圆y225x291 有相同焦点的椭圆标准方程为_.解析(1)设椭圆方程为mx2ny21(m,n0,mn).由322m522n1,3m5n1,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 2019 高考 数学 一轮 复习 第九 课时 椭圆 及其 标准 方程 教案 新人
链接地址:https://www.taowenge.com/p-82129543.html
限制150内