离散型随机变量的分布列综合题精选(共16页).doc
《离散型随机变量的分布列综合题精选(共16页).doc》由会员分享,可在线阅读,更多相关《离散型随机变量的分布列综合题精选(共16页).doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上离散型随机变量的分布列综合题精选(附答案)1.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖,盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖。卡片用后入回盒子,下一位参加者继续重复进行。 ()活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从盒中抽取两张都是“世博会会徽”卡的概率是,求抽奖者获奖的概率; ()现有甲乙丙丁四人依次抽奖,用表示获奖的人数,求的分布列及的值。解:(I)设“世博会会徽”卡有n张,由
2、得n=5,故“海宝”卡有4张,抽奖者获奖的概率为5分 (II)的分布列为 01234P12分2.某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K和D两个动作。比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。假设每个运动员完成每个系列中的K和D两个动作的得分是相互独立的。根据赛前训练的统计数据,某运动员完成甲系列和乙系列中的K和D两个动作的情况如下表:表1:甲系列表2:乙系列动作K动作D动作得分100804010概率动作K动作D动作得分9050200概率现该运动员最后一个出场,之前其他运动员的最高得分为115分。(1) 若该运动员希望获得该项目的第一名,应选择哪个系列
3、?说明理由。并求其获得第一名的概率。(2) 若该运动员选择乙系列,求其成绩的分布列及数学期望解.(1)应选择甲系列,因为甲系列最高可得到140分,而乙系列最高只可得到110分,不可能得第一名。 该运动员获得第一名的概率 (2)的可能取值有50,70,90,110。 110907050P3在本次考试中共有12道选择题,每道选择题有4个选项,其中只有一个是正确的。评分标准规定:每题只选一项,答对得5分,不答或答错得0分。某考生每道题都给出一个答案。某考生已确定有9道题的答案是正确的,而其余题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜。试求出
4、该考生:()选择题得60分的概率;()选择题所得分数的数学期望解:(1)得分为60分,12道题必须全做对在其余的3道题中,有1道题答对的概率为,有1道题答对的概率为,还有1道答对的概率为,所以得分为60分的概率为: ,。5分(2)依题意,该考生得分的范围为45,50,55,60. ,。6分得分为45分表示只做对了9道题,其余各题都做错,所以概率为 ,。7分得分为50分的概率为: ,。8分同理求得得分为55分的概率为: ,。9分得分为60分的概率为: ,。10分所以得分的分布列为45505560数学期望。12分4某地区举办科技创新大赛,有50件科技作品参赛,大赛组委会对这50件作品分别从“创新性
5、”和“实用性”两项进行评分,每项评分均按等级采用5分制,若设“创新性”得分为,“实用性”得分为,统计结果如下表:作品数量 实用性1分2分3分4分5分创新性1分131012分107513分210934分1605分00113()求“创新性为4分且实用性为3分”的概率;()若“实用性”得分的数学期望为,求、的值解:()从表中可以看出,“创新性为分且实用性为分”的作品数量为件,“创新性为分且实用性为分”的概率为 4分()由表可知“实用性”得分有分、分、分、分、分五个等级,且每个等级分别有件,件,件,件,件 5分“实用性”得分的分布列为:又“实用性”得分的数学期望为, 10分作品数量共有件, 解得, 1
6、3分5一个袋中装有个形状大小完全相同的小球,球的编号分别为.()若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率; ()若从袋中每次随机抽取个球,有放回的抽取3次,求恰有次抽到号球的概率; ()若一次从袋中随机抽取个球,记球的最大编号为,求随机变量的分布列.解:()设先后两次从袋中取出球的编号为,则两次取球的编号的一切可能结果有种, 2分其中和为的结果有,共种,则所求概率为. 4分()每次从袋中随机抽取个球,抽到编号为的球的概率.6分所以,次抽取中,恰有次抽到6号球的概率为. 8分()随机变量所有可能的取值为. 9分,. 12分所以,随机变量的分布列为:13分6甲
7、、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方块4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张。(1)设分别表示甲、乙抽到的牌的数字,写出甲、乙二人抽到的牌的所有情况(2)若甲抽到红桃3,则乙抽到的牌面数字比3大的概率是多少?(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜。你认为此游戏是否公平?请说明你的理由.解:(1)甲、乙二人抽到的牌的所有情况为(2,3),(2,4),(2,),(3,2),(3,4),(3,),(4,2),(4,3),(4,),(,2),(,3),(,4),共12种不同情况 4分(2)甲抽到3,乙抽
8、到的牌只能是2,4,.因此乙抽到的牌的数字大于3的概率为. 8分 (3)由甲抽到的牌比乙大有(3,2),(4,2),(4,3),(,2),(,3),共5种甲获胜的概率乙获胜的概率为 此游戏不公平 .13分7某地区教研部门要对高三期中数学练习进行调研,考察试卷中某道填空题的得分情况.已知该题有两空,第一空答对得3分,答错或不答得0分;第二空答对得2分,答错或不答得0分.第一空答对与否与第二空答对与否是相互独立的.从所有试卷中随机抽取1000份试卷,其中该题的得分组成容量为1000的样本,统计结果如下表:第一空得分情况第二空得分情况得分03得分02人数198802人数698302第一空得分第二空得
9、分得分03得分02人数198802人数698302()求样本试卷中该题的平均分,并据此估计这个地区高三学生该题的平均分.BACMFED()这个地区的一名高三学生因故未参加考试,如果这名学生参加考试,以样本中各种得分情况的频率(精确到0.1)作为该同学相应的各种得分情况的概率.试求该同学这道题得分的数学期望.解:()设样本试卷中该题的平均分为,则由表中数据可得: ,.3分 据此可估计这个地区高三学生该题的平均分为3.01分. .4分()依题意,第一空答对的概率为0.8,第二空答对的概率为0.3,6分则该同学这道题得分的分布列如下:ks5u0235P014006056024所以E=00.14+20
10、.06+30.56+50.24=3 12分8某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等品.() 随机选取1件产品,求能够通过检测的概率;()随机选取3件产品,其中一等品的件数记为,求的分布列;() 随机选取3件产品,求这三件产品都不能通过检测的概率.解:()设随机选取一件产品,能够通过检测的事件为 1分事件等于事件 “选取一等品都通过检测或者是选取二等品通过检测” 2分 4分() 由题可知可能取值为0,1,2,3. ,. 8分0123 9分 ()设随机选取3件产品都不能通过检测的事件为 10分事件等
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离散 随机变量 分布 综合 精选 16
限制150内