三角函数的定义教案.docx
《三角函数的定义教案.docx》由会员分享,可在线阅读,更多相关《三角函数的定义教案.docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、三角函数的定义教案 使学生理解并驾驭三角函数线的作法,能利用三角函数线解决一些简洁问题. 2.培育学生分析、探究、归纳和类比的实力,以及形象思维实力。下面是我给大家整理的三角函数的定义教案5篇,希望大家能有所收获! 三角函数的定义教案1 教学打算 教学目标 1、学问与技能 (1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能娴熟地推断简洁的实际问题的周期;(5)能利用周期函数定义进行简洁运用。 2、过程与方法 通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季改变等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定
2、义;依据周期性的定义,再在实践中加以应用。 3、情感看法与价值观 通过本节的学习,使同学们对周期现象有一个初步的相识,感受生活中到处有数学,从而激发学生的学习主动性,培育学生学好数学的信念,学会运用联系的观点相识事物。 教学重难点 重点:感受周期现象的存在,会推断是否为周期现象。 难点:周期函数概念的理解,以及简洁的应用。 教学工具 投影仪 教学过程 【创设情境,揭示课题】 同学们:我们生活在海南岛特别华蜜,可以常常看到大海,陶冶我们的情操。众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今日要学到的周期现象。再比如,取出一个钟表,实际操作我们发觉钟表上的
3、时针、分针和秒针每经过一周就会重复,这也是一种周期现象。所以,我们这节课要探讨的主要内容就是周期现象与周期函数。(板书课题) 【探究新知】 1.我们已经知道,潮汐、钟表都是一种周期现象,请同学们视察钱塘江潮的图片(投影图片),留意波浪是怎样改变的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。请你举诞生活中存在周期现象的例子。(单摆运动、四季改变等) (板书:一、我们生活中的周期现象) 2.那么我们怎样从数学的角度探讨周期现象呢?老师引导学生自主学习课本P3P4的相关内容,并思索回答下列问题: 如何理解“散点图”? 图1-1中横坐标和纵坐标分别表示什么? 如何理解图1-1中的“H/m”
4、和“t/h”? 对于周期函数的定义,你的理解是怎样? 以上问题都由学生来回答,老师加以点拨并总结:周期函数定义的理解要驾驭三个条件,即存在不为0的常数T;x必需是定义域内的随意值;f(x+T)=f(x)。 (板书:二、周期函数的概念) 3.展示投影练习: (1)已知函数f(x)满意对定义域内的随意x,均存在非零常数T,使得f(x+T)=f(x)。 求f(x+2T),f(x+3T) 略解:f(x+2T)=f(x+T)+T=f(x+T)=f(x) f(x+3T)=f(x+2T)+T=f(x+2T)=f(x) 本题小结,由学生完成,总结出“周期函数的周期有多数个”,老师指出一般状况下,为避开引起混淆
5、,特指最小正周期。 (2)已知函数f(x)是R上的周期为5的周期函数,且f(1)=2005,求f(11) 略解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2005 (3)已知奇函数f(x)是R上的函数,且f(1)=2,f(x+3)=f(x),求f(8) 略解:f(8)=f(2+23)=f(2)=f(-1+3)=f(-1)=-f(1)=-2 【巩固深化,发展思维】 1.请同学们先自主学习课本P4倒数第五行P5倒数第四行,然后各个学习小组之间绽开合作沟通。 2.例题讲评 例1.地球围围着太阳转,地球到太阳的距离y是时间t的函数吗?假如是,这个函数 y=f(t)是不是周期函数? 例
6、2.图1-4(见课本)是钟摆的示意图,摆心A到铅垂线MN的距离y是时间t的函数,y=g(t)。依据钟摆的学问,简单说明g(t+T)=g(t),其中T为钟摆摇摆一周(来回一次)所需的时间,函数y=g(t)是周期函数。若以钟摆偏离铅垂线MN的角的度数为变量,依据物理学问,摆心A到铅垂线MN的距离y也是的周期函数。 例3.图1-5(见课本)是水车的示意图,水车上A点到水面的距离y是时间t的函数。假设水车5min转一圈,那么y的值每经过5min就会重复出现,因此,该函数是周期函数。 3.小组课堂作业 (1)课本P6的思索与沟通 (2)(回答)今日是星期三那么7k(kZ)天后的那一天是星期几?7k(kZ
7、)天前的那一天是星期几?100天后的那一天是星期几? 五、归纳整理,整体相识 (1)请学生回顾本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些? (2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。 (3)你在这节课中的表现怎样?你的体会是什么? 六、布置作业 1.作业:习题1.1第1,2,3题. 2.多视察一些日常生活中的周期现象的例子,进一步理解它的特点. 课后小结 归纳整理,整体相识 (1)请学生回顾本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些? (2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。 (3)你在这节课中的表现怎样
8、?你的体会是什么? 课后习题 作业 1.作业:习题1.1第1,2,3题. 2.多视察一些日常生活中的周期现象的例子,进一步理解它的特点. 板书 略 三角函数的定义教案2 教学打算 教学目标 1、学问与技能 (1)理解并驾驭正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性; (2)能娴熟运用正弦函数的性质解题。 2、过程与方法 通过正弦函数在R上的图像,让学生探究出正弦函数的性质;讲解例题,总结方法,巩固练习。 3、情感看法与价值观 通过本节的学习,培育学生创新实力、探究归纳实力;让学生体验自身探究胜利的喜悦感,培育学生的自信念;使学生相识到转化“冲突”是解决问题的有效途经;培育学生形成
9、实事求是的科学看法和锲而不舍的钻研精神。 教学重难点 重点:正弦函数的性质。 难点:正弦函数的性质应用。 教学工具 投影仪 教学过程 【创设情境,揭示课题】 同学们,我们在数学一中已经学过函数,并驾驭了探讨一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在R上图像,下面请同学们依据图像一起探讨一下它具有哪些性质? 【探究新知】 让学生一边看投影,一边细致视察正弦曲线的图像,并思索以下几个问题: (1)正弦函数的定义域是什么? (2)正弦函数的值域是什么? (3)它的最值状况如何? (4)它的正负值区间如何分? (5)?(x)=0的解集是多少? 师生一
10、起归纳得出: 1.定义域:y=sinx的定义域为R 2.值域:引导回忆单位圆中的正弦函数线,结论:|sinx|1(有界性) 再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为-1,1 三角函数的定义教案3 一、教学目标 1. 通过视察、猜想、比较、详细操作等数学活动,学会用计算器求一个锐角的三角函数值。 2.经验利用三角函数学问解决实际 问题的过程,促进视察、分析、归纳、沟通等实力的发展。 3.感受数学与生活的亲密联系,丰富数学学习的胜利体验,激发学生接着学习 的新奇 心,培育学生与他人合作沟通的意识。 二、教材分析 在生活中,我们会常常遇到这样的问题,如测量建筑物的高度、测量江河的
11、宽度、船舶的定位等,要解决这样的问题,往往要应用到三角函数学问。在上节课中已经学习了30, 45,60角的三角函数值,可以进行一些特定状况下的计算,但是生活中的问题,仅仅依靠这三个特别角度的三角函数值来解决是不行能的。本节课让学生运用计算器求三角函数值,让他们从繁重的计算中解脱出来,体验发觉并提 出问题、分析问题、探究解决方法直至最终解决问题的过程。 三、学校及学生状况分析 九年级的学生年龄一般在15岁左右,在这个阶段,学生以抽象逻辑思维为主要发展趋势,但在很大程度上,学生仍旧要依靠详细的阅历材料和操作活动来理解抽象的逻辑关系。另外,计算器的运用可以极大减轻学生的负担。因此,依据教材中供应的背
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角函数 定义 教案
限制150内