2023年九年级二次函数常考知识点总结整理.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2023年九年级二次函数常考知识点总结整理.doc》由会员分享,可在线阅读,更多相关《2023年九年级二次函数常考知识点总结整理.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、九年级二次函数常考知识点总结整理一、 函数定义与表达式1. 一般式:(,为常数,);2. 顶点式:(,为常数,);一般式:顶点式:(h、k) 3. 交点式:(,是抛物线与轴两交点的横坐标).顶点坐标注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表达二次函数解析式的这三种形式可以互化二、 函数图像的性质抛物线(1)开口方向二次项系数二次函数中,作为二次项系数,显然 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大; 当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大总
2、结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小IaI越大开口就越小,IaI越小开口就越大. (2)抛物线是轴对称图形,对称轴为直线 一般式: 对称轴 顶点式:x=h 两根式:x=(3)对称轴位置一次项系数b和二次项系数a共同决定对称轴的位置。(“左同右异”) a与b同号(即ab0) 对称轴在y轴左侧 a与b异号(即ab0) 对称轴在y轴右侧 (4)增减性,最大或最小值当a0时,在对称轴左侧(当时),y随着x的增大而减少;在对称轴右侧(当时),y随着x的增大而增大;当a0时,函数有最小值,并且当x=,;当a0时在x轴上方;c0的解集是二次函数y=ax2+bx+c的
3、图象在x轴上方的点相应的横坐标的范围,即 ;一元二次不等式ax2+bx+c0的解集是二次函数y=ax2+bx+c的图象在x轴下方的点相应的横坐标的范围,即: .例题:、二次函数的图象如图9所示,根据图象解答下列问题:(1)写出方程的两个根(2)写出不等式的解集(3)写出随的增大而减小的自变量的取值范围 图9(4)若方程有两个不相等的实数根,求的取值范围图9七、二次函数的最值看定义域 定义域为全体实数时,顶点纵坐标是最 值; 定义域不包含顶点时,观测图象拟定边界点,进而拟定最值八、抛物线对称变换前后的解析式关于y轴对称x互为相反数 y=ax2+bx+c y= ax2-bx +c y互为相反数关于x轴对称关于原点对称x、y互为相反数y=-ax2-bx-c y=-ax2+bx-c九. 二次函数常用解题方法总结: 求二次函数的图象与轴的交点坐标,需转化为一元二次方程; 求二次函数的最大(小)值需要运用配方法将二次函数由一般式转化为顶点式; 根据图象的位置判断二次函数中a、b、c的符号,或由二次函数中a、b、c的符号判断图象的位置,要数形结合; 二次函数的图象关于对称轴对称,可运用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 九年级 二次 函数 知识点 总结 整理
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内