2023年人教版B数学必修知识点总结及经典练习.doc
《2023年人教版B数学必修知识点总结及经典练习.doc》由会员分享,可在线阅读,更多相关《2023年人教版B数学必修知识点总结及经典练习.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版B数学必修2知识点总结及经典练习1、(1)平面含义:平面是无限延展的,没有大小,厚薄之分。此外,注意平面的表达方法。(2)点与平面的关系:点A在平面内,记作;点不在平面内,记作点与直线的关系:点A的直线l上,记作:Al;点A在直线l外,记作Al;直线与平面的关系:直线l在平面内,记作l ;直线l不在平面内,记作l 。2、四个公理与等角定理:(1)公理1:假如一条直线上的两点在一个平面内,那么这条直线在此平面内.LA符号表达为AL BL L A B公理1作用:判断直线是否在平面内.(只要找到直线的两点在平面内,则直线在平面内)CBA(2)公理2:过不在一条直线上的三点,有且只有一个平面。符
2、号表达为:A、B、C三点不共线 = 有且只有一个平面,使A、B、C。公理2的三个推论:(1):通过一条直线和这条直线外的一点,有且只有一个平面。(2):通过两条相交直线,有且只有一个平面。(3):通过两条平行直线,有且只有一个平面。公理2作用:拟定一个平面的依据。(3)公理3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表达为:P =L,且PLPL公理3说明:两个不重合的平面只要有公共点,那么它们必然交于一条过该公共点的直线,且线唯一。公理3作用:鉴定两个平面是否相交的依据,是证明三线共点、三点共线的依据。即:鉴定两个平面相交的方法。说明两个平面的交线与两个平
3、面公共点之间的关系:交线必过公共点。可以判断点在直线(交线)上,即证若干个点共线的重要依据。(4)公理4:平行于同一条直线的两条直线互相平行。符号表达为:设a、b、c是三条直线acabcb强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都合用。公理4作用:判断空间两条直线平行的依据。(表白空间中平行于一条已知直线的所有直线都互相平行)(5)等角定理:空间中假如两个角的两边分别相应平行,那么这两个角相等或互补.3、(1)证明共面问题:方法1是先证明由某些元素拟定一个平面,在证明其余元素也在这个平面内。 方法2是先证明分别由不同元素拟定若干个平面,再证明这些平面重合。(2)证明三点共线问
4、题的方法:先拟定其中两点在某两个平面的交线上,再证明第三点是这两个平面的公共点,则第三个点在必然在这两个平面的交线上。(3)证明三线共点问题的方法:先证明其中两条直线交于一点,再证明第三条直线也通过这个点。4、异面直线:不同在任何一个平面内的两条直线。(既不平行也不相交的两条直线) 异面直线定义:不同在任何一个平面内的两条直线 异面直线性质:既不平行,又不相交。 异面直线鉴定:过平面外一点与平面内一点的直线与平面内但是该点的直线是异面直线 异面直线所成角:直线a、b是异面直线,通过空间任意一点O,分别引直线aa,bb,则把直线a和b所成的锐角(或直角)叫做异面直线a和b所成的角。两条异面直线所
5、成角的范围是(0,90,若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。(两条直线互相垂直,有共面垂直与异面垂直两种情形)说明:(1)鉴定空间直线是异面直线方法:根据异面直线的定义;异面直线的鉴定定理(2)在异面直线所成角定义中,空间一点O是任取的,而和点O的位置无关。(3)求异面直线所成角环节:(一作、二证、三计算)第一步作角:先固定其中一条直线,在这条直线取一点,过这个点作另一条直线的平行先;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。第二步证明作出的角即为所求角。第三步运用三角形边长关系计算出角。(思绪是把两条异面直线所成的角转化为两条相交直线所成的角)5、空间中
6、直线与直线、直线与平面、平面与平面之间的位置关系(1)空间两条直线的位置关系有且只有三种:共面直线 相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。(2)直线与平面的位置关系有且只有三种:直线在平面内有无数个公共点直线与平面相交 有且只有一个公共点直线在平面平行 没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a 来表达三种位置关系的符号表达:a aA a注意直线与平面的位置关系其他分类:(1)按直线与平面的公共点数分类:(自己补充) (2)按直线是否与平面平行分类:(3)按直线是否在平面内分类:(3)平
7、面与平面之间的位置关系有且只有两种:(按有无公共点分类)两个平面平行没有公共点;。两个平面相交有一条公共直线;b。6、空间中的平行问题(1)线线平行的鉴定方法:线线平行的定义:两条直线共面,但是无公共点 公理4:平行于同一条直线的两条直线互相平行线面平行的性质定理: 线面垂直的性质定理: 面面平行的性质定理: (2)直线与平面平行的鉴定及其性质线面平行的鉴定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。线线平行线面平行证明线面平行,只要在平面内找一条直线b与直线a平行即可。一般情况下,我们会用到中位线定理、平行线段成比例问题、平行公理等。线面平行的性质定理:假如一条直线和一
8、个平面平行,通过这条直线的平面和这个平面相交,那么这条直线和交线平行。 线面平行线线平行 性质定理的作用:运用该定理可解决直线间的平行问题线面平行的鉴定方法: 线面平行的定义:直线与平面无公共点 鉴定定理: 面面平行的性质: (3)平面与平面平行的鉴定及其性质面面平行的鉴定定理:假如一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行面面平行),两个平面平行的性质定理与结论:假如两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行线线平行)假如两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行线面平行)面面平行的鉴定方法:面面平行的定义:两个平面无公
9、共点。 鉴定定理: 线面垂直的性质定理: 公理四的推广: 7、空间中的垂直问题线线、面面、线面垂直的定义两条异面直线的垂直:假如两条异面直线所成的角是直角,就说这两条异面直线互相垂直。线面垂直:假如一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。平面和平面垂直:假如两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。(1)线线垂直的鉴定方法:线线垂直的定义:两条直线所成的角是直角。(共面垂直、异面垂直)线面垂直的性质: 线面垂直的性质: (2)线面垂直鉴定定理和性质定理鉴定定理:假如一条直线和一个平面内的两条相
10、交直线都垂直,那么这条直线垂直这个平面。鉴定线面垂直,只要在平面内找到 两条相交直线 与已知直线垂直即可(注意:两条直线必须相交)经常用到的知识点有:等腰三角形三线合一(中线,角平分线,高),假如取等腰三角形底边的中点,连接顶点与中点的线既是中线也是高,所以,这条线垂直于底边;正方形的对角线是互相垂直的;三角形勾股逆定理,可以推出a边与b边垂直;假如是要证异面垂直的两条直线,一般采用线面垂直来证明一条线垂直于另一条线所在的平面,从而得到两条异面直线垂直;采用三垂线定理或者其逆定理得到两条直线垂直。性质定理:假如两条直线同垂直于一个平面,那么这两条直线平行。线面垂直的鉴定方法:线面垂直的定义 线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年人教版 数学 必修 知识点 总结 经典 练习
限制150内