机器学习算法之神经网络ppt课件.ppt
《机器学习算法之神经网络ppt课件.ppt》由会员分享,可在线阅读,更多相关《机器学习算法之神经网络ppt课件.ppt(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确机器学机器学习算法算法 人工神人工神经网网络(Artificial Neural Netwroks)报告人:曹杰(湖大团队)在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确神经网络基本概念1神经网络的学习方法2BP神经网络3BP神经网络实例(Python)4目录目录在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确生物神生物神经经元的模型元的模型神经网络的基本概念在整堂课
2、的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确神神经经元的数学模型元的数学模型神经元的n个输入 接收的信息(其它神经元的输出)作比较 的阈值互连强度/连接权值 激活函数 输出 连接的权值:两个互连的神经元之间相互作用的强弱。神经元模型:神经元相当于一个多元输入一元输出的信息处理单元在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确神神经经元的数学模型元的数学模型 上面的神经元模型可以用一个数学表达式进行抽象与概括,从而得到神经元的数学模型:神经元的网络输入记为net,即 有时为了方便
3、,设则有:其中,在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确激活函数1.阈值型激活函数2.S型激活函数3.分段线性激活函数在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确数学神经元例子在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确神经网络学习方法学习:神经网络的最重要特征之一。实质:同一个训练集的样本输入
4、输出模式反复作用于网络,网络按照一定的训练规则自动调节神经元之间的连接强度或拓扑结构,使实际输出满足期望的要求或者趋于稳定。学习规则(典型的权值修正方法):误差修正学习、Hebb学习规则学习方法:有监督学习、无监督学习在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确学学习规则(1)选择一组初始权值wij(1);(2)计算某一输入模式对应的实际输出与期望输出的误差;(3)更新权值,阈值可视为输入恒为(1)的一个权值;式中,:学习因子;dj,yj(t):第j个神经元的期望输出与实际输出;xi(t):第j个神经元的第i个输入。(4)返回(2
5、),直到对所有训练模式网络输出均能满足要求。神经网络的学习体现在:权值变化;网络结构变化。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确感知器*双层(输入层、输出层);*两层单元之间为全互连;*连接权值可调。结构特点:*输出层神经元个数等于类 别数(两类问题时输出层 为一个神经元)。感知器结构示意图 在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确设输入模式向量,共M类。输出层第j个神经元对应第j个模式类,输出为wij:输入模式第i个分量与 输出层第j个神经元间的连接权。j
6、:第j个神经元的阈值;输出单元对所有输入数值加权求和,经阈值型输出函数产生一组输出模式。令 。取有在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确感知器例子权重向量w。训练样本x1.把权重向量初始化为0,或把每个分量初始化为0,1间的任意小数2.把训练样本输入感知器,得到分类结果(-1或1)3.根据分类结果更新权重向量在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确权重更新算法在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题
7、也很明确权重更新示例在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确阈值更新在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确神经网络模型输出层第二隐层第一隐层输入层神经网络模型 神经元的连接方式不同,网络的拓扑结构也不同,人工神经网络的拓扑结构是决定人工神经网络特征的第二要素,根据神经元之间连接的拓扑结构不同,可将人工神经网络分成两类,即分层网络和相互连接型网络。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确分层网
8、络 分层网络将一个神经网络中的所有神经元按功能分为若干层,一般有输入层、中间层(隐藏层)和输出层。分层网络按照信息的传递方向可分为前向式网络(如图a)和反馈网络(如图b、c)。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确BP神经网络BP网络主要用于1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数。2)模式识别:用一个特定的输出向量将它与输入向量联系起来。3)分类:把输入向量 以所定义的合适方式进行分类。4)数据压缩:减少输出向量维数以便于传输或存储。BP神经网络(Back Propagation Neural Ne
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机器 学习 算法 神经网络 ppt 课件
限制150内