劳斯-霍尔维茨稳定性判据ppt课件.ppt
《劳斯-霍尔维茨稳定性判据ppt课件.ppt》由会员分享,可在线阅读,更多相关《劳斯-霍尔维茨稳定性判据ppt课件.ppt(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确 第四节第四节 劳斯劳斯-霍尔维茨稳定性判据霍尔维茨稳定性判据 稳定性是控制系统最重要的问题,也是对系统最起码的要求。控制系统在实际运行中,总会受到外界和内部一些因素的扰动,例如负载或能源的波动、环境条件的改变、系统参数的变化等。如果系统不稳定,当它受到扰动时,系统中各物理量就会偏离其平衡工作点,并随时间推移而发散,即使扰动消失了,也不可能恢复原来的平衡状态。因此,如何分析系统的稳定性并提出保证系统稳定的措施,是控制理论的基本任务之一。在整堂课的教学中,刘教师总是让学生带着问题来学习,而
2、问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确 常用的稳定性分析方法有:1.劳斯赫尔维茨(RouthHurwitz)判据 这是一种代数判据方法。它是根据系统特征方程式来判断特征根在S平面的位置,从而决定系统的稳定性.2.根轨迹法 这是一种图解求特征根的方法。它是根据系统开环传递函数以某一(或某些)参数为变量作出闭环系统的特征根在S平面的轨迹,从而全面了解闭环系统特征根随该参数的变化情况。3.奈魁斯特(Nyquist)判据 这是一种在复变函数理论基础上建立起来的方法。它根据系统的开环频率特性确定闭环系统的稳定性,同样避免了求解闭环系统特征根的困难。这一方法在工程上是得到了比较广泛的应用
3、。4.李雅普诺夫方法 上述几种方法主要适用于线性系统,而李雅普诺夫方法不仅适用于线性系统,更适用于非线性系统。该方法是根据李雅普诺夫函数的特征来决定系统的稳定性。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确一、稳定性的概念 稳定性的概念可以通过图3-31所示的方法加以说明。考虑置于水平面上的圆锥体,其底部朝下时,若将它稍微倾斜,外作用力撤消后,经过若干次摆动,它仍会返回到原来状态。而当圆锥体尖部朝下放置时,由于只有一点能使圆锥体保持平衡,所以在受到任何极微小的扰动后,它就会倾倒,如果没有外力作用,就再也不能回到原来的状态了。(a)
4、稳定的 (b)不稳定的 图3-31 圆锥体的稳定性在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确 根据上述讨论,可以将系统的稳定性定义为,系统在受到外作用力后,偏离了正常工作点,而当外作用力消失后,系统能够返回到原来的工作点,则称系统是稳定的。瞬态响应项不外乎表现为衰减、临界和发散这三种情况之一,它是决定系统稳定性的关键。由于输入量只影响到稳态响应项,并且两者具有相同的特性,即如果输入量r(t)是有界的:|r(t)|,t 0 则稳态响应项也必定是有界的。这说明对于系统稳定性的讨论可以归结为,系统在任何一个有界输入的作用下,其输出是否
5、有界的问题。一个稳定的系统定义为,在有界输入的作用下,其输出响应也是有界的。这叫做有界输入有界输出稳定,又简称为BIBO稳定。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确 线性闭环系统的稳定性可以根据闭环极点在S平面内的位置予以确定。假如单输入单输出线性系统由下述的微分方程式来描述,即 (3.58)则系统的稳定性由上式左端决定,或者说系统稳定性可按齐次微分方程式 (3.59)来分析。这时,在任何初始条件下,若满足 (3.60)在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明
6、确 则称系统(3.58)是稳定的。为了决定系统的稳定性,可求出式(3.59)的解。由数学分析知道,式(3.59)的特征方程式为 (3.61)设上式有k个实根-pi(i=1,2,k),r对共轭复数根(-s ijw i)(i=1,2,r),k+2r=n,则齐次方程式(3.59)解的一般式为 (3.62)式中系数Ai,Bi和Ci由初始条件决定。从式(3.62)可知:(1)若-pi 0,-s i 0,则系统稳定的必要条件是上述系统特征方程的所有系数均为正数。证明如下:设式(3.63)有n个根,其中k个实根-p j(j=1,2,k),r对复根-s ijw i (i=1,2,r),n=k+2r。则特征方程
7、式可写为在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确 假如所有的根均在左半平面,即-p j 0,-s i0,s i 0。所以将各因子项相乘展开后,式(3.63)的所有系数都是正数。根据这一原则,在判别系统的稳定性时,可首先检查系统特征方程的系数是否都为正数,假如有任何系数为负数或等于零(缺项),则系统就是不稳定的。但是,假若特征方程的所有系数均为正数,并不能肯定系统是稳定的,还要做进一步的判别。因为上述所说的原则只是系统稳定性的必要条件,而不是充分必要条件。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯
8、度,由浅入深,所提出的问题也很明确(二二)劳斯判据劳斯判据 这是1877年由劳斯(Routh)提出的代数判据。1.若系统特征方程式 设an0,各项系数均为正数。2.按特征方程的系数列写劳斯阵列表:在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确表中直至其余bi项均为零。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确 按此规律一直计算到n-1行为止。在上述计算过程中,为了简化数值运算,可将某一行中的各系数均乘一个正数,不会影响稳定性结论。3.考察阵列表第一列系数的符号。假若劳
9、斯阵列表中第一列系数均为正数,则该系统是稳定的,即特征方程所有的根均位于根平面的左半平面。假若第一列系数有负数,则第一列系数符号的改变次数等于在右半平面上根的个数。例3.3 系统特征方程为试用劳斯判据判别系统的稳定性。解 从系统特征方程看出,它的所有系数均为正实数,满足系统稳定的必要条件。列写劳斯阵列表如下在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确 1 12 6 6 11 0 61/6 6 455/61 0 6 第一列系数均为正实数,故系统稳定。事实上,从因式分解可将特征方程写为其根为-2,-3,均具有负实部,所以系统稳定。(s
10、+2)(s+3)(s2+s+1)=0 在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确例例3.4 已知系统特征方程式为 解 列写劳斯阵列表 1 2 5 3 1 6 5 9 (各系数均已乘3)-11 15 (各系数均已乘5/2)174 (各系数均已乘11)15 劳斯阵列表第一列有负数,所以系统是不稳定的。由于第一列系数的符号改变了两次(511174),所以,系统特征方程有两个根的实部为正。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确 4.两种特殊情况 在劳斯阵列表的计算过程
11、中,如果出现:(1)劳斯阵列表中某一行的第一个系数为零,其余各系数不为零(或没有其余项),这时可用一个很小的正数e来代替这个零,从而使劳斯阵列表可以继续运算下去(否则下一行将出现)。如果e的上下两个系数均为正数,则说明系统特征方程有一对虚根,系统处干临界状态;如果e的上下两个系数的符号不同,则说明这里有一个符号变化过程,则系统不稳定,不稳定根的个数由符号变化次数决定。例3.5 设系统特征方程为s 3+2s 2+s+2=0在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确 解解 劳斯阵列表为 由于e的上下两个系数(2和2)符号相同,则说明
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 劳斯 霍尔 稳定性判据 ppt 课件
限制150内