(第2课时)11回归分析的基本思想及其初步应用ppt课件.ppt
《(第2课时)11回归分析的基本思想及其初步应用ppt课件.ppt》由会员分享,可在线阅读,更多相关《(第2课时)11回归分析的基本思想及其初步应用ppt课件.ppt(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用第一章第一章 统计案例统计案例1.1回归分析的基本思想回归分析的基本思想 (2)经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。编号12345678身高/cm 165165 157 170 175 165 155 170体重/kg485750546461435
2、9求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。案例案例1:女大学生的身高与体重:女大学生的身高与体重解:解:1、选取身高为自变量、选取身高为自变量x,体重为因变量,体重为因变量y,作散点图:,作散点图:2、由散点图知道身高和体重有比较好的、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程线性相关关系,因此可以用线性回归方程刻画它们之间的关系。刻画它们之间的关系。3、从散点图还看到,样本点散布在某一条、从散点图还看到,样本点散布在某一条直线的附近,
3、而不是在一条直线上,所以直线的附近,而不是在一条直线上,所以不能用一次函数不能用一次函数y=bx+a描述它们关系。描述它们关系。我们可以用下面的我们可以用下面的线性回归模型线性回归模型来表示:来表示:y=bx+a+e,其中,其中a和和b为模型的未知参数,为模型的未知参数,e称为随机误差称为随机误差。经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。5943616454505748体重/kg
4、170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。根据最小二乘法估计 和 就是未知参数a和b的最好估计,于是有b=所以回归方程是所以,对于身高为所以,对于身高为172cm的女大学生,由回归方程可以预报其体重为的女大学生,由回归方程可以预报其体重为 探究:探究:身高为身高为172cm的女大学生的体重一定是的女大学生的体重一定是60.316kg吗?吗?如果不是,你能解析一下原因吗?如果不是,你能解析
5、一下原因吗?经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用函数模型与回归模型之间的差别函数模型与回归模型之间的差别函数模型:回归模型:线性回归模型线性回归模型y=bx+a+e增加了随机误差项增加了随机误差项e,因变量,因变量y的值由自变量的值由自变量x和和随机误差项随机误差项e共同确定,即共同确定,即自变量自变量x只能解析部分只能解析部分y的变化的变化。在统计中,我们也把自变量在统计中,我们也把自变量x称为解析变量,因变量称为解析变量,因变量y称为预报变量。称为预报变量。经营者提供商品或者服务有欺诈行为的,应当
6、按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用思考思考产生随机误差项产生随机误差项e的原因是什么?的原因是什么?随机误差随机误差e e的来源的来源(可以推广到一般):可以推广到一般):1、其它因素的影响:影响身高、其它因素的影响:影响身高 y 的因素不只是体重的因素不只是体重 x,可能,可能 还包括遗传基因、饮食习惯、生长环境等因素;还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;、用线性回归模型近似真实模型所引起的误差;3、身高、身高 y 的观测误差的观测误差。经营者提供商品或者服务有欺诈行为的,应当按照消费者
7、的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用探究n在线性回归模型中,e是用 预报真 实值y的误差,它是一个不可观测 的量,那么应该怎么样研究随机 误差?如何衡量预报的精度?经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用对回归模型进行统计检验对回归模型进行统计检验思考:思考:如何刻画预报变量(体重)的变化?这个变化在多大程度上如何刻画预报变量(体重)的变化?这个变化在多大程度上与解析变量(身高)有关?在多大程度上与随机误差有关?与解析变量(身高)有关?在多大程度上与随机误差有关
8、?假设身高和随机误差的不同不会对体重产生任何影响,那么所有人假设身高和随机误差的不同不会对体重产生任何影响,那么所有人的体重将相同。的体重将相同。在体重不受任何变量影响的假设下,设在体重不受任何变量影响的假设下,设8名女大学生的体重都名女大学生的体重都是她们的平均值,即是她们的平均值,即8个人的体重都为个人的体重都为54.5kg。54.554.554.554.554.554.554.554.5体重/kg170155165175170157165165身高/cm87654321编号54.5kg在散点图中,所有的点应该落在同一条在散点图中,所有的点应该落在同一条水平直线上,但是观测到的数据并非如水
9、平直线上,但是观测到的数据并非如此。此。这就意味着这就意味着预报变量(体重)的值预报变量(体重)的值受解析变量(身高)或随机误差的影响受解析变量(身高)或随机误差的影响。经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用5943616454505748体重/kg170155165175170157165165身高/cm87654321编号 例如,编号为例如,编号为6的女大学生的体重并没有落在水平直线上,她的体重为的女大学生的体重并没有落在水平直线上,她的体重为61kg。解析。解析变量(身高)和随机误差共同把这名学生
10、的体重从变量(身高)和随机误差共同把这名学生的体重从54.5kg“推推”到了到了61kg,相差,相差6.5kg,所以所以6.5kg是解析变量和随机误差的是解析变量和随机误差的组合效应组合效应。编号为编号为3的女大学生的体重并也没有落在水平直线上,她的体重为的女大学生的体重并也没有落在水平直线上,她的体重为50kg。解析。解析变量(身高)和随机误差共同把这名学生的体重从变量(身高)和随机误差共同把这名学生的体重从50kg“推推”到了到了54.5kg,相差,相差-4.5kg,这时解析变量和随机误差的组合效应为这时解析变量和随机误差的组合效应为-4.5kg。用这种方法可以对所有预报变量计算组合效应。
11、用这种方法可以对所有预报变量计算组合效应。数学上,把每个效应(观测值减去总的平均值)的平方加起来,即用数学上,把每个效应(观测值减去总的平均值)的平方加起来,即用表示总的效应,称为表示总的效应,称为总偏差平方和总偏差平方和。在例在例1中,总偏差平方和为中,总偏差平方和为354。经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用54.5kg经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用5943616454505748体重/kg1701
12、55165175170157165165身高/cm87654321编号 那么,在这个总的效应(总偏差平方和)中,有多少来自于解析变量(身高)?那么,在这个总的效应(总偏差平方和)中,有多少来自于解析变量(身高)?有多少来自于随机误差?有多少来自于随机误差?假设随机误差对体重没有影响,也就是说,体重仅受身高的影响,那么散点图假设随机误差对体重没有影响,也就是说,体重仅受身高的影响,那么散点图中所有的点将完全落在回归直线上。但是,在图中,数据点并没有完全落在回归中所有的点将完全落在回归直线上。但是,在图中,数据点并没有完全落在回归直线上直线上。这些点散布在回归直线附近,所以一定是随机误差把这些点从
13、回归直线上这些点散布在回归直线附近,所以一定是随机误差把这些点从回归直线上“推推”开了开了。在例在例1中,残差平方和约为中,残差平方和约为128.361。因此,数据点和它在回归直线上相应位置的差异因此,数据点和它在回归直线上相应位置的差异 是随机误差的效应,是随机误差的效应,称称 为为残差残差。例如,编号为例如,编号为6的女大学生,计算随机误差的效应(残差)为:的女大学生,计算随机误差的效应(残差)为:对每名女大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号对每名女大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号称为称为残差平方和残差平方和,它代表了随机误差的效应。
14、它代表了随机误差的效应。表示为:表示为:经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用 由于解析变量和随机误差的总效应(总偏差平方和)为由于解析变量和随机误差的总效应(总偏差平方和)为354,而随机误差的效应为,而随机误差的效应为128.361,所以解析变量的效应为,所以解析变量的效应为解析变量和随机误差的总效应(总偏差平方和)解析变量和随机误差的总效应(总偏差平方和)=解析变量的效应(回归平方和)解析变量的效应(回归平方和)+随机误差的效应(残差平方和)随机误差的效应(残差平方和)354-128.361=22
15、5.639 这个值称为这个值称为回归平方和。回归平方和。我们可以用我们可以用相关指数相关指数R2来刻画回归的效果,其计算公式是来刻画回归的效果,其计算公式是经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用离差平方和的分解离差平方和的分解(三个平方和的意义)1.总偏差平方和总偏差平方和(SST)q反映因变量的反映因变量的 n 个观察值与其均值的总离差个观察值与其均值的总离差2.回归平方和回归平方和(SSR)q反反映映自自变变量量 x 的的变变化化对对因因变变量量 y 取取值值变变化化的的影影响响,或或者者说说,是是
16、由由于于 x 与与 y 之之间间的的线线性性关关系系引引起起的的 y 的的取值变化,也称为可解释的平方和取值变化,也称为可解释的平方和3.残差平方和残差平方和(SSE)q反反映映除除 x 以以外外的的其其他他因因素素对对 y 取取值值的的影影响响,也也称称为为不可解释的平方和或剩余平方和不可解释的平方和或剩余平方和经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用我们可以用我们可以用相关指数相关指数R2来刻画回归的效果,其计算公式是来刻画回归的效果,其计算公式是显然,显然,R2的值越大,说明残差平方和越小,也就是说
17、模型拟合效果越好。的值越大,说明残差平方和越小,也就是说模型拟合效果越好。在线性回归模型中,在线性回归模型中,R2表示解析变量对预报变量变化的贡献率表示解析变量对预报变量变化的贡献率。R2越接近越接近1,表示回归的效果越好(因为,表示回归的效果越好(因为R2越接近越接近1,表示解析变量和,表示解析变量和预报变量的线性相关性越强)。预报变量的线性相关性越强)。如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值的值来做出选择,即来做出选择,即选取选取R2较大的模型作为这组数据的模型较大的模型作为这组数据的模型。总
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 课时 11 回归 分析 基本 思想 及其 初步 应用 ppt 课件
限制150内