古典概型复习课ppt课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《古典概型复习课ppt课件.ppt》由会员分享,可在线阅读,更多相关《古典概型复习课ppt课件.ppt(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、龙江县第一中学杨秀玉龙江县第一中学杨秀玉古典概型专题经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用复习复习1 1:什么是基本事件?什么是等可能基本事件?什么是基本事件?什么是等可能基本事件?我们又是如何去定义古典概型我们又是如何去定义古典概型?在一次试验中可能出现的每一基本结果称为在一次试验中可能出现的每一基本结果称为基本事件基本事件若在一次试验中,每个基本事件发生的可能性都相同,若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为则称这些基本事件为等可能基本事件等可能基本事件满足以下两个特点的随
2、机试验的概率模型称为满足以下两个特点的随机试验的概率模型称为古典概型古典概型:所有的基本事件只有有限个所有的基本事件只有有限个 每个基本事件的发生都是等可能的每个基本事件的发生都是等可能的(即即试验结果的有限性试验结果的有限性和和所有结果的等可能性。所有结果的等可能性。)经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用复习复习2 2:求古典概型的步骤:求古典概型的步骤:n(1 1)判断是否为等可能性事件)判断是否为等可能性事件;n(2 2)计算所有基本事件的总结果数)计算所有基本事件的总结果数n n;n(3 3)
3、计算事件)计算事件A A所包含的结果数所包含的结果数m m;n(4 4)计算)计算 经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用例例1.(1.(摸球问题摸球问题)一个口袋内装有大小相同的一个口袋内装有大小相同的5 5个个红球和红球和3 3个黄球,从中一次摸出两个球。个黄球,从中一次摸出两个球。求摸出的两个球一红一黄的概率。求摸出的两个球一红一黄的概率。问共有多少个基本事件;问共有多少个基本事件;求摸出两个球都是红球的概率;求摸出两个球都是红球的概率;求摸出的两个球都是黄球的概率;求摸出的两个球都是黄球的概率;
4、典例剖析典例剖析经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用例例1.1.(摸球问题摸球问题)一个口袋内装有大小相同的)一个口袋内装有大小相同的5 5个红球和个红球和3 3个黄球,个黄球,从中一次摸出两个球。从中一次摸出两个球。问共有多少个基本事件;问共有多少个基本事件;解:解:分别对红球编号为分别对红球编号为1 1、2 2、3 3、4 4、5 5号,对黄球编号号,对黄球编号6 6、7 7、8 8号,从中任取两球,有如下等可能基本事件,枚举如下:号,从中任取两球,有如下等可能基本事件,枚举如下:(1,2)、()
5、、(1,3)、()、(1,4)、()、(1,5)、()、(1,6)、()、(1,7)、()、(1,8)(2,3)、()、(2,4)、()、(2,5)、()、(2,6)、()、(2,7)、()、(2,8)(3,4)、()、(3,5)、()、(3,6)、()、(3,7)、()、(3,8)(4,5)、()、(4,6)、()、(4,7)、()、(4,8)(5,6)、()、(5,7)、()、(5,8)(6,7)、()、(6,8)(7,8)7654321共有共有2828个等可能事件个等可能事件28经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的
6、价款或接受服务的费用例例1.1.(摸球问题摸球问题)一个口袋内装有大小相同的)一个口袋内装有大小相同的5 5个红球和个红球和3 3个黄球,个黄球,从中一次摸出两个球。从中一次摸出两个球。求摸出两个球都是红球的概率;求摸出两个球都是红球的概率;设设“摸出两个球都是红球摸出两个球都是红球”为事件为事件A A则则A A中包含的基本事件有中包含的基本事件有1010个,个,因此因此 (5,6)、()、(5,7)、()、(5,8)(1,2)、()、(1,3)、()、(1,4)、()、(1,5)、()、(1,6)、()、(1,7)、()、(1,8)(2,3)、()、(2,4)、()、(2,5)、()、(2,
7、6)、()、(2,7)、()、(2,8)(3,4)、()、(3,5)、()、(3,6)、()、(3,7)、()、(3,8)(4,5)、()、(4,6)、()、(4,7)、()、(4,8)(6,7)、()、(6,8)(7,8)经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用例例1.1.(摸球问题摸球问题)一个口袋内装有大小相同的)一个口袋内装有大小相同的5 5个红球和个红球和3 3个黄球,个黄球,从中一次摸出两个球。从中一次摸出两个球。求摸出的两个球都是黄球的概率;求摸出的两个球都是黄球的概率;设设“摸出的两个球都
8、是黄球摸出的两个球都是黄球”为事件为事件B B,故故(5,6)、()、(5,7)、()、(5,8)(1,2)、()、(1,3)、()、(1,4)、()、(1,5)、()、(1,6)、()、(1,7)、()、(1,8)(2,3)、()、(2,4)、()、(2,5)、()、(2,6)、()、(2,7)、()、(2,8)(3,4)、()、(3,5)、()、(3,6)、()、(3,7)、()、(3,8)(4,5)、()、(4,6)、()、(4,7)、()、(4,8)(6,7)、()、(6,8)(7,8)则事件则事件B B中包含的基本事件有中包含的基本事件有3 3个,个,经营者提供商品或者服务有欺诈行为
9、的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用例例1 1(摸球问题摸球问题)一个口袋内装有大小相同的)一个口袋内装有大小相同的5 5个红球和个红球和3 3个黄球,个黄球,从中一次摸出两个球。从中一次摸出两个球。求摸出的两个球一红一黄的概率。求摸出的两个球一红一黄的概率。设设“摸出的两个球一红一黄摸出的两个球一红一黄”为事件为事件C C,(5,6)、()、(5,7)、()、(5,8)(1,2)、()、(1,3)、()、(1,4)、()、(1,5)、()、(1,6)、()、(1,7)、()、(1,8)(2,3)、()、(2,4)、()、(2,5)
10、、()、(2,6)、()、(2,7)、()、(2,8)(3,4)、()、(3,5)、()、(3,6)、()、(3,7)、()、(3,8)(4,5)、()、(4,6)、()、(4,7)、()、(4,8)(6,7)、()、(6,8)(7,8)故故则事件则事件C C包含的基本事件有包含的基本事件有1515个,个,经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用答:答:共有共有2828个基本事件个基本事件;摸出两个球都是红球的概率为摸出两个球都是红球的概率为摸出的两个球都是黄球的概率为摸出的两个球都是黄球的概率为摸出的两
11、个球一红一黄的概率为摸出的两个球一红一黄的概率为经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用例例2.2.(掷骰子问题掷骰子问题)将一个骰子先后抛掷)将一个骰子先后抛掷2 2次,观察向上的点数。次,观察向上的点数。问问:(1 1)共有多少种不同的结果共有多少种不同的结果?(2 2)两数之和是)两数之和是3 3的倍数的结果有多少种?的倍数的结果有多少种?(3 3)两数之和是)两数之和是3 3的倍数的概率是多少?的倍数的概率是多少?解解:(1 1)将)将骰子抛掷骰子抛掷1 1次,它次,它出现的点数有出现的点数有1
12、1,2 2,3 3,4 4,5 5,6 6这这6 6种结果,对于每一种结果,种结果,对于每一种结果,第二次抛时又都有第二次抛时又都有6 6种可能的结种可能的结果,于是共有果,于是共有66=3666=36种不同的种不同的结果。结果。6 7 8 9 10 11第一次抛掷后向上的点数第一次抛掷后向上的点数1 2 3 4 5 6第第二二次次抛抛掷掷后后向向上上的的点点数数6 65 54 43 32 21 12 3 4 5 6 73 4 5 6 7 84 5 6 7 8 97 8 9 10 11 125 6 7 8 9 10由表可知,等可能基由表可知,等可能基本事件总数为本事件总数为3636种。种。经营
13、者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用6 7 8 9 10 11第一次抛掷后向上的点数第一次抛掷后向上的点数1 2 3 4 5 6第第二二次次抛抛掷掷后后向向上上的的点点数数6 65 54 43 32 21 12 3 4 5 6 73 4 5 6 7 84 5 6 7 8 97 8 9 10 11 125 6 7 8 9 10(2 2)记)记“两次向上点数之和是两次向上点数之和是3 3的倍数的倍数”为事件为事件A A,则事件则事件A A的结果有的结果有1212种。种。(3 3)两次向上点数之和是)两次向上点
14、数之和是3 3的的倍数的概率为:倍数的概率为:经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用解:记解:记“两次向上点数之和不低于两次向上点数之和不低于10”10”为事件为事件B B,则事件则事件B B的结果有的结果有6 6种,种,因此所求概率为:因此所求概率为:变式变式1 1:两数之和不低于:两数之和不低于1010的结果有多少种?两的结果有多少种?两数之和不低于数之和不低于1010的的概的的概率是多少?率是多少?6 7 8 9 10 11第一次抛掷后向上的点数第一次抛掷后向上的点数1 2 3 4 5 6第第二二
15、次次抛抛掷掷后后向向上上的的点点数数6 65 54 43 32 21 12 3 4 5 6 73 4 5 6 7 84 5 6 7 8 97 8 9 10 11 125 6 7 8 9 10经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用 根据此根据此表,我们表,我们还能得出还能得出那些相关那些相关结论呢?结论呢?变式变式2 2:点数之和为质数的概率为多少?点数之和为质数的概率为多少?变式变式3 3:点数之和为多少时,概率最大且概率是多少?点数之和为多少时,概率最大且概率是多少?点数之和为点数之和为7 7时,概率
16、最大,时,概率最大,且概率为:且概率为:6 7 8 9 10 11第一次抛掷后向上的点数第一次抛掷后向上的点数1 2 3 4 5 6第第二二次次抛抛掷掷后后向向上上的的点点数数6 65 54 43 32 21 12 3 4 5 6 73 4 5 6 7 84 5 6 7 8 97 8 9 10 11 125 6 7 8 9 10经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用变式变式4 4:如果抛掷三次,问抛掷三次的点数都是偶数的概率,如果抛掷三次,问抛掷三次的点数都是偶数的概率,以及抛掷三次得点数之和等于以及抛
17、掷三次得点数之和等于9 9的概率分别是多少?的概率分别是多少?分析:分析:抛掷一次会出现抛掷一次会出现6 6种不同结果,当连抛掷种不同结果,当连抛掷3 3次时,次时,事件所含基本事件总数为事件所含基本事件总数为6*6*6=216 6*6*6=216 种,且每种结果都是种,且每种结果都是等可能的等可能的.解:解:记事件记事件E E表示表示“抛掷三次的点数都是偶数抛掷三次的点数都是偶数”,而每,而每次抛掷点数为偶数有次抛掷点数为偶数有3 3种结果:种结果:2 2、4 4、6;6;由于基本事件数目较多,已不宜采用枚举法,利用计数由于基本事件数目较多,已不宜采用枚举法,利用计数原理,可用分析法求原理,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 古典 复习 ppt 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内