《九年级数学下册-2.3-垂径定理ppt课件-(新版)湘教版.ppt》由会员分享,可在线阅读,更多相关《九年级数学下册-2.3-垂径定理ppt课件-(新版)湘教版.ppt(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1最新中小学教案、试题、试卷、课件赵州石拱桥赵州石拱桥 1300 1300多年前多年前,我国隋朝建造的赵州石拱桥我国隋朝建造的赵州石拱桥(如图如图)的桥拱是的桥拱是圆弧形圆弧形,它的它的跨度跨度(弧所对的弦的长弧所对的弦的长)为为37.4m,37.4m,拱高拱高(弧的中弧的中点到弦的距离点到弦的距离,也叫弓形高也叫弓形高)为为7.2m,7.2m,求桥拱的半径求桥拱的半径(精确到精确到0.1m).0.1m).2最新中小学教案、试题、试卷、课件2.3 2.3 垂径定理垂径定理3最新中小学教案、试题、试卷、课件1.理解圆是轴对称图形理解圆是轴对称图形,由圆的折叠猜想由圆的折叠猜想垂径定理垂径定理,并
2、进行推理验证并进行推理验证.2.理解垂径定理理解垂径定理,灵活运用定理进行证明灵活运用定理进行证明及计算及计算.【教学重点教学重点】垂径定理及运用垂径定理及运用.【教学难点教学难点】用垂径定理解决实际问题用垂径定理解决实际问题.4最新中小学教案、试题、试卷、课件把一个圆沿着它的任意一条把一个圆沿着它的任意一条直径直径对折,重复几次,对折,重复几次,圆是轴对称图形吗?若是,对称轴是什么?圆是轴对称图形吗?若是,对称轴是什么?可以发现:可以发现:圆圆是是轴对称图形,任何一条轴对称图形,任何一条直径所在直线直径所在直线都是它的对称轴都是它的对称轴新课导入新课导入新课导入新课导入5最新中小学教案、试题
3、、试卷、课件CAEBO.D垂径定理:垂径定理:垂直于弦的直径平分弦,垂直于弦的直径平分弦,并且平分弦对的两条弧。并且平分弦对的两条弧。CD为为 O的直径的直径CDAB 条件条件结论结论AE=BEAE=BEAC=BCAC=BCAD=BDAD=BD归纳总结归纳总结归纳总结归纳总结6最新中小学教案、试题、试卷、课件如图,如图,AB是是 O的一条弦,作直径的一条弦,作直径CD,使,使CDAB,垂,垂足为足为E(1)这个图形是轴对称图形吗?如果是,它的对称轴)这个图形是轴对称图形吗?如果是,它的对称轴是什么?是什么?OABCDE(2 2)你能发现图中有那些相等的线段和弧?为什么?)你能发现图中有那些相等
4、的线段和弧?为什么?探索新知探索新知探索新知探索新知7最新中小学教案、试题、试卷、课件2、请画图说明垂径定理的条件和结论。、请画图说明垂径定理的条件和结论。1、判断下列图是否是表示垂径定理的图形。、判断下列图是否是表示垂径定理的图形。是是不是不是是是8最新中小学教案、试题、试卷、课件E EO OA AB BD DC CE EA AB BC CD DE EO OA AB BD DC CE EO OA AB BC CE EO OC CD DA AB B 练习练习1O OB BA AE ED在下列图形,符合垂径定理的条件吗?在下列图形,符合垂径定理的条件吗?O O9最新中小学教案、试题、试卷、课件1
5、0最新中小学教案、试题、试卷、课件应用垂径定理的书写步骤应用垂径定理的书写步骤定理:垂直于弦的直径平分弦定理:垂直于弦的直径平分弦,并且平分弦所并且平分弦所对的两条弧对的两条弧.OABCDMCDAB,CD是直径是直径,AM=BM,AC=BC,AD =BD.11最新中小学教案、试题、试卷、课件ABCDEABDC条件条件CDCD为直径为直径结论结论AC=BCAD=BDCDABCDABAE=BE平分弦平分弦 的直径垂直于弦,并且平分的直径垂直于弦,并且平分弦所对的两条弧弦所对的两条弧(不是直径不是直径)垂径定理的推论垂径定理的推论1:1:CDABCDAB吗?吗?(E)(E)12最新中小学教案、试题、
6、试卷、课件1.垂径定理垂径定理经常和经常和勾股定理勾股定理结合使用。结合使用。2.解决有关弦的问题时,经常解决有关弦的问题时,经常(1)连结半径连结半径;(2 2)过圆心作一条与弦垂直的线段过圆心作一条与弦垂直的线段等等辅助线,为应用垂径定理创造条件。辅助线,为应用垂径定理创造条件。归纳总结归纳总结归纳总结归纳总结13最新中小学教案、试题、试卷、课件E E例例1 如图,已知在如图,已知在 O中,中,弦弦AB的长为的长为8cm,圆心,圆心O到到AB的距离为的距离为3cm,求,求 O的半的半径。径。A AB B.O O垂径定理的应用垂径定理的应用典例赏析典例赏析典例赏析典例赏析14最新中小学教案、
7、试题、试卷、课件 8cm1 1半径半径为为4cm4cm的的OO中,弦中,弦AB=4cmAB=4cm,那么圆心那么圆心O O到弦到弦ABAB的距离是的距离是 。2 2OO的的直径直径为为10cm10cm,圆心,圆心O O到弦到弦ABAB的的 距离为距离为3cm3cm,则弦,则弦ABAB的长是的长是 。3 3半径半径为为2cm2cm的圆中,过半径中点且的圆中,过半径中点且 垂直于这条半径的弦长是垂直于这条半径的弦长是 。A AB BO OE EA AB BO OE EO OA AB BE E运用新知运用新知运用新知运用新知15最新中小学教案、试题、试卷、课件4 4.如图如图,在在OO中中,弦弦AB
8、AB的长为的长为8cm,8cm,圆心到圆心到ABAB的的距离为距离为3cm,3cm,则则OO的半径为的半径为 .ABOC5cm345 5.弓形的弦长弓形的弦长ABAB为为24cm24cm,弓形的高,弓形的高CDCD为为8cm8cm,则这弓形所在圆的半径为,则这弓形所在圆的半径为.13cm(4)4)题题(5)5)题题12816最新中小学教案、试题、试卷、课件1.垂径定理垂径定理经常和经常和勾股定理勾股定理结合使用。结合使用。2.解决有关弦的问题时,经常解决有关弦的问题时,经常(1)连结半径连结半径;(2 2)过圆心作一条与弦垂直的线段过圆心作一条与弦垂直的线段等等辅助线,为应用垂径定理创造条件。
9、辅助线,为应用垂径定理创造条件。归纳总结归纳总结归纳总结归纳总结17最新中小学教案、试题、试卷、课件解:如图,设半径为解:如图,设半径为R,在在tAODtAOD中,中,由勾股定理,得由勾股定理,得解得解得 R27.9(m).答:赵州桥的主桥拱半径约为答:赵州桥的主桥拱半径约为27.9m.D37.47.2赵州桥主桥拱的赵州桥主桥拱的跨度跨度(弧所对的弦的长弧所对的弦的长)为为37.4m,37.4m,拱高拱高(弧的中点到弦的距离弧的中点到弦的距离)为为7.2m7.2m,你能求出赵州桥,你能求出赵州桥主桥拱的半径吗?主桥拱的半径吗?AB=37.4,CD=7.2R R18.7R-7.2R-7.2再逛赵州石拱桥再逛赵州石拱桥18最新中小学教案、试题、试卷、课件请围绕以下两个方面小结本节课:请围绕以下两个方面小结本节课:1 1、从知识上学习了什么?、从知识上学习了什么?、从方法上学习了什么?、从方法上学习了什么?圆的轴对称性;垂径定理及其推论圆的轴对称性;垂径定理及其推论()()垂径定理和勾股定理结合。垂径定理和勾股定理结合。()()在圆中解决与弦有关的问题时常作的辅助线在圆中解决与弦有关的问题时常作的辅助线 过圆心作垂直于弦的线段;过圆心作垂直于弦的线段;连接半径。连接半径。课堂小结课堂小结课堂小结课堂小结19最新中小学教案、试题、试卷、课件
限制150内