北师大版八年级数学下册-第四章---因式分解-ppt课件.ppt
《北师大版八年级数学下册-第四章---因式分解-ppt课件.ppt》由会员分享,可在线阅读,更多相关《北师大版八年级数学下册-第四章---因式分解-ppt课件.ppt(127页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、4.1 因式分解因式分解导入新课讲授新课当堂练习课堂小结第四章 因式分解学习目标1.解掌握因式分解的意义,会判断一个变形是否为因式分解.(重点)2.理解因式分解与整式乘法之间的联系与区别.(难点)导入新课导入新课复习引入问题1:21能被哪些数整除?1,3,7,21.问题2:你是怎样想到的?因为21=121=37.思考:既然有些数能分解因数,那么类似地,有些多项式可以分解成几个整式的积吗?可以.因式分解的概念一讲授新课讲授新课问题:993-99能被100整除这个吗?所以,993-99能被100整除.想一想想一想:993-99还能被哪些整数还能被哪些整数整除整除?探究引入问题探究如图,一块菜地被分
2、成三部分,你能用不同的方式表示这块草坪的面积吗?abcm方法一:m(a+b+c)方法二:ma+mb+mcm(a+b+c)=ma+mb+mc整式乘法?完成下列题目:x(x-2)=_(x+y)(x-y)=_(x+1)2=_x2-2xx2-y2x2+2x+1根据左空,解决下列问题:x2-2x=()()x2-y2=()()x2+2x+1=()2xx-2x+yx-yx+1做一做联系:左右两式是同一多项式的不同表现形式.区别:左边一栏是多项式的乘法,右边一栏是把多项式化成了几个整式的积,他们的运算是相反的.问题2:右边一栏表示的正是多项式的因式分解,你能根据我们的分析说出什么是因式分解吗?问题1:观察同一
3、行中,左右两边的等式有什么区别和联系?总结归纳 把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也可称为分解因式.其中,每个整式都叫做这个多项式的因式.判断下列各式从左到右的变形中,是否为因式分解:辩一辩 A.x(ab)=axbx B.x21+y2=(x1)(x+1)+y2 C.y21=(y+1)(y1)D.ax+by+c=x(a+b)+c E.2a3b=a22ab F.(x+3)(x3)=x29提示:判定一个变形是因式分解的条件:(1)左边是多项式(2)右边是积的形式.(3)右边的因式全是整式.做一做根据左面算式填空:(1)3x2-3x=_(2)ma+mb+mc=_(3)m2-16
4、=_(4)x2-6x+9=_(5)a3-a=_计算下列各式:(1)3x(x-1)=_,(2)m(a+b+c)=_,(3)(m+4)(m-4)=_,(4)(x-3)2=,(5)a(a+1)(a-1)=_,3x2 -3xma+mb+mcm2-16x2-6x+9a3-a3x(x-1)m(a+b+c)(m+4)(m-4)(x-3)2a(a+1)(a-1)想一想:由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与它有什么不同?由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形与上面的变形互为逆过程.因式分解与整
5、式乘法的关系二x2-1 (x+1)(x-1)因式分解整式乘法x2-1=(x+1)(x-1)等式的特征:左边是多项式,右边是几个整式的乘积想一想:整式乘法与因式分解有什么关系?是互为相反的变形,即例 若多项式x2+ax+b分解因式的结果为a(x2)(x+3),求a,b的值.解:x2+ax+b=a(x2)(x+3)=ax2+ax-6a.a=1,b=6a=6.典例精析方法归纳:对于此类问题,掌握因式分解与整式乘法为互逆运算是解题关键,应先把分解因式后的结果乘开,再与多项式的各项系数对应比较即可.下列多项式中,分解因式的结果为-(x+y)(x-y)的是()Ax2y2 Bx2+y2Cx2+y2 Dx2y
6、2B练一练当堂练习当堂练习2.下列从左到右的变形中,是因式分解的有_.24x2y=4x6xy (x+5)(x5)=x225 x2+2x3=(x+3)(x1)9x26x+1=3x(x2)+1 x2+1=x(x+)3xn+2+27xn=3xn(x2+9)1.下列各式中从左到右的变形属于分解因式的是()A.a(a+b-1)=a2+ab-a B.a2-a-2=a(a-1)-2C.-4a2+9b2=(-2a+3b)(2a+3b)D.2x+1=x(2+)C3.把多项式x2+4mx+5因式分解得(x+5)(x+n),则m+n的值为 解析:由题意可得 x2+4mx+5=(x+5)(x+n)=x2+(n+5)x
7、+5n,5n=5,4m=n+5 解得n=1,m=,m+n=1+=.4.20042+2004能被2005整除吗?解:20042+2004=2004(2004+1)=2004 2005 20042+2004能被2005整除5.若多项式x4+mx3+nx16含有因式(x2)和(x1),求mn的值.解:x4+mx3+nx16的最高次数是4,可设x4+mx3+nx16=(x-1)(x-2)(x2+ax+b),则x4+mx3+nx-16=x4+(a-3)x3+(b-3a+2)x2+(2a-3b)x+2b 比较系数得 2b=-16,b-3a+2=0,a-3=m,2a-3b=n 解得a=-2,b=-8,m=-
8、5,n=20.mn=520=1006.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),求a+b的值.解:分解因式甲看错了b,但a是正确的,其分解结果为x2+ax+b=(x+2)(x+4)=x2+6x+8,a=6,同理,乙看错了a,但b是正确的,分解结果为x2+ax+b=(x+1)(x+9)=x2+10 x+9,b=9,a+b=15课堂小结课堂小结因式分解定义:把一个多项式化成几个整式的_的形式,叫做因式分解,也可称为_.其中,每个整式叫做这个多项式的_.与多项式乘法运算的关系 的变形过程.前者是把一个多项式化为几个
9、整式的_,后者是把几个整式的_化为一个_.积 分解因式 因式 相反 多项式 乘积 乘积 4.2 提公因式法提公因式法导入新课讲授新课当堂练习课堂小结第四章 因式分解 第1课时 提公因式为单项式的因式分解学习目标1.能准确地找出各项的公因式,并注意各种变形的符号问题;(重点)2.能简单运用提公因式法进行因式分解.(难点)导入新课导入新课问题引入问题1:多项式ma+mb+mc有哪几项?问题2:每一项的因式都分别有哪些?问题3:这些项中有没有公共的因式,若有,公共的因 式是什么?ma,mb,mc依次为m,a和m,b和m,c有,为m问题4:请说出多项式ab2-2a2b中各项的公共的因式.a,b,ab相
10、同因式p这个多项式有什么特点?pa+pb+pc 我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式.讲授新课讲授新课确定公因式一例1 找 3x 2 6 xy 的公因式.系数:最大公约数3字母:相同的字母x 所以公因式是3x.指数:相同字母的最低次幂1典例精析u正确找出多项式各项公因式的关键是:1.定系数:公因式的系数是多项式各项系数的最大公 约数.2.定字母:字母取多项式各项中都含有的相同的字母.3.定指数:相同字母的指数取各项中最小的一个,即 字母最低次幂.要点归纳写出下列多项式的公因式.(1)x-x2;(2)abc+2a;(3)abc-b2+2ab;(4)a2+ax2;练一练xa
11、ba提公因式为单项式的因式分解二观看视频学习 提公因式法 一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.(a+b+c )pa+pb+pcp=概念学习8a3b2+12ab3c;例2 分解因式:分析:提公因式法步骤(分两步)第一步:找出公因式;第二步:提取公因式,即将多项式化为两个因式的乘积.解:8a3b2+12ab3c=4ab2 2a2+4ab2 3bc=4ab2(2a2+3bc);如果提出公因式4ab,另一个因式是否还有公式?另一个因式将是2a2b+3b2c,它还有公因式是b.思考:以下是三名同学对多项
12、式2x2+4x分解因式的结果:(1)2x2+4x=2(x2+2x);(2)2x2+4x=x(2x+4);(3)2x2+4x=2x(x+2).第几位同学的结果是正确的?用提公因式法分解因式应注意哪些问题呢?做乘法运算来检验易得第3位同学的结果是正确的.因式分解:12x2y+18xy2.解:原式=3xy(4x+6y).错误公因式没有提尽,还可以提出公因式2注意:公因式要提尽.正确解:原式=6xy(2x+3y).问题1:小明的解法有误吗?易错分析当多项式的某一项和公因式相同时,提公因式后剩余的项是1.错误注意:某项提出莫漏1.解:原式=x(3x-6y).因式分解:3x2-6xy+x.正确解:原式=3
13、xx-6yx+1x =x(3x-6y+1)问题2:小亮的解法有误吗?提出负号时括号里的项没变号错误因式分解:-x2+xy-xz.解:原式=-x(x+y-z).注意:首项有负常提负.正确解:原式=-(x2-xy+xz)=-x(x-y+z)问题3:小华的解法有误吗?例3 分解下列因式:解:(1)3x+x3=x 3+xx2=x(3+x2);(2)7x3 21x2=7x2x 7x23=7x2(x3);(3)8a3b2 12ab3c+ab=ab8a2b ab12b2c+ab1=ab(8a2b12b2c+1);(4)24x3+12x228x =(24x3 12x2+28x)=(4x6x2 4x3x+4x7
14、)=4x(6x2 3x+7).例4 已知ab7,ab4,求a2bab2的值原式ab(ab)4728.解:ab7,ab4,方法总结:含ab,ab的求值题,通常要将所求代数式进行因式分解,将其变形为能用ab和ab表示的式子,然后将ab,ab的值整体带入即可.1.多项式8xmyn112x3myn的公因式是()AxmynBxmyn1C4xmynD4xmyn1解析:(1)公因式的系数是多项式各项系数的最大 公约数,为4;(2)字母取各项都含有的相同字母,为xy;(3)相同字母的指数取次数最低的,x为m次,y为n-1次;D当堂练习当堂练习2.把多项式4a3+4a216a分解因式()Aa(4a24a+16)
15、Ba(4a2+4a16)C4(a3a2+4a)D4a(a2a+4)D3.若ab=3,a2b=5,则a2b2ab2的值是()A15 B15 C2 D8解析:因为ab=3,a2b=5,所以a2b2ab2=ab(a2b)=35=15A4.计算(3)m+2(3)m1,得()A3m1 B(3)m1C(3)m1 D(3)m解析:(3)m+2(3)m1 =(3)m1(3+2)=(3)m1C5.把下列多项式分解因式:(1)-3x2+6xy-3xz;(2)3a3b+9a2b2-6a2b.解:-3x2+6xy-3xz =(-3x)x+(-3x)(-2y)+(-3x)z =-3x(x-2y+z).3a3b+9a2b
16、2-6a2b=3a2ba+3a2b3b-3a2b2=3a2b(a+3b-2)6.已知:2x+y=4,xy=3,求代数式2x2y+xy2的值.解:2x2y+xy2=xy(2x+y)=3 4=12.课堂小结课堂小结因式分解提 公 因 式 法(单 项 式)确定公因式的方法:三定,即定系数;定字母;定指数分两步:第一步找公因式;第二步提公因式注注意意1.分解因式是一种恒等变形;2.公因式:要提尽;3.不要漏项;4.提负号,要注意变号4.2 提公因式法提公因式法导入新课讲授新课当堂练习课堂小结第四章 因式分解 第2课时 提公因式为多项式的因式分解学习目标1.准确地找出各项的多项式公因式进行因式分解;(重
17、点)2.能运用整体思想进行因式分解.(难点)导入新课导入新课复习引入 1.多项式的第一项系数为负数时,先提取“-”号,注意多项式的各项变号;2.公因式的系数是多项式各项_;3.字母取多项式各项中都含有的_;4.相同字母的指数取各项中最小的一个,即 _.提公因式法因式分解的一般步骤:系数的最大公约数相同的字母最低次幂思考1:提公因式时,公因式可以是多项式吗?找找上面各式的公因式.思考2:公因式是多项式形式,怎样运用提公因式法分解因式?提公因式为多项式的因式分解讲授新课讲授新课例1 把下列各式分解因式(1)a(x-3)+2b(x-3)(2)解:(1)a(x-3)+2b(x-3)=(x-3)(a+2
18、b)=y(x+1)(1+xy+y)(2)典例精析归纳总结1.公因式既可以是一个单项式的形式,也可以是一个多项式的形式.2.整体思想是数学中一种重要而且常用的思想方法.练一练:1.x(a+b)+y(a+b)2.3a(xy)(xy)3.6(p+q)212(q+p)=(a+b)(x+y)=(xy)(3a1)=6(p+q)(p+q-2)例2 把下列各式因式分解:两个只有符号不同的多项式是否有关系,有如下判断方法:(1)当相同字母前的符号相同时,则两个多项式相等.如:a-b 和-b+a 即 a-b=-b+a(2)当相同字母前的符号均相反时,则两个多项式互为相反数.如:a-b 和 b-a 即 a-b=-(
19、a-b)归纳总结由此可知规律:由此可知规律:(1)a-b 与与-a+b 互为相反数互为相反数.(a-b)n=(b-a)n (n是偶数)是偶数)(a-b)n=-(b-a)n (n是奇数)是奇数)(2)a+b与与b+a 互为相同数互为相同数,(a+b)n=(b+a)n (n是整数)是整数)a+b 与与-a-b 互为相反数互为相反数.(-a-b)n=(a+b)n (n是偶数)是偶数)(-a-b)n=-(a+b)n (n是奇数)是奇数)在下列各式等号右边的括号前填入“+”或“-”号,使等式成立:(1)(a-b)=_(b-a);(2)(a-b)2=_(b-a)2;(3)(a-b)3=_(b-a)3;(4
20、)(a-b)4=_(b-a)4;(5)(a+b)=_(b+a);(6)(a+b)2=_(b+a)2.+-+(7)(a+b)3=_(-b-a)3;-(8)(a+b)4=_(-a-b)4.+当堂练习当堂练习 1.请在下列各式等号右边填入“+”或“-”号,使等式成立.(1)2-a=(a-2)(2)y-x=(x-y)(3)b+a=(a+b)-(6)-m-n=(m+n)(5)s2+t2=(s2-t2)(4)(b-a)2=(a-b)2(7)(b-a)3=(a-b)3-+-3.因式分解:(x-y)2+y(y-x).解法1:(x-y)2+y(y-x)=(x-y)2-y(x-y)=(x-y)(x-y-y)=(x
21、-y)(x-2y).解法2:(x-y)2+y(y-x)=(y-x)2+y(y-x)=(y-x)(y-x+y)=(y-x)(2y-x).2.因式分解:p(a2+b2)-q(a2+b2).解:p(a2+b2)-q(a2+b2)=(a2+b2)(p-q).课堂小结课堂小结因式分解公 因 式为 多 项式确定公因式的方法:三定,即定系数;定字母;定指数分两步:(整体思想)第一步找公因式;第二步提公因式注注意意1.分解因式是一种恒等变形;2.公因式:要提尽;3.不要漏项;4.提负号,要注意变号4.3 公式法公式法导入新课讲授新课当堂练习课堂小结第四章 因式分解 第1课时 平方差公式学习目标1.探索并运用平
22、方差公式进行因式分解,体会转化 思想(重点)2.能会综合运用提公因式法和平方差公式对多项式进 行因式分解(难点)导入新课导入新课a米米b米米b米米a米米(a-b)情境引入如图,在边长为a米的正方形上剪掉一个边长为b米的小正方形,将剩余部分拼成一个长方形,根据此图形变换,你能得到什么公式?a2-b2=(a+b)(a-b)讲授新课讲授新课用平方差公式进行因式分解一想一想:多项式a2-b2有什么特点?你能将它分解因式吗?是a,b两数的平方差的形式)(baba-+=22ba-)(22bababa-+=-整式乘法因式分解因式分解两个数的平方差,等于这两个数的和与这两个数的差的乘积.平方差公式:辨一辨:下
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 八年 级数 下册 第四 因式分解 ppt 课件
限制150内