高中数学选修1.2.2组合人教版课件.ppt
《高中数学选修1.2.2组合人教版课件.ppt》由会员分享,可在线阅读,更多相关《高中数学选修1.2.2组合人教版课件.ppt(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、复习复习问题问题1 1:什么叫做排列?:什么叫做排列?排列的特征是什么?排列的特征是什么?问题问题2 2:什么叫做排列数?:什么叫做排列数?它的计算公式是怎样的?它的计算公式是怎样的?引例引例1 1:从甲、乙、丙从甲、乙、丙3 3名同学中选出名同学中选出2 2名去参名去参加一项活动,有多少种不同的选法?加一项活动,有多少种不同的选法?问题问题1 1、从甲、乙、丙从甲、乙、丙3 3名同学中选出名同学中选出2 2名参加某名参加某天的一项活动,其中天的一项活动,其中1 1名同学参加上午的活动,名同学参加上午的活动,1 1名同学参加下午的活动,有多少种不同的选法?名同学参加下午的活动,有多少种不同的选
2、法?甲、乙;甲、丙;乙、丙甲、乙;甲、丙;乙、丙 3 3从已知的从已知的3个个不同元素中不同元素中每次取出每次取出2个个元素元素 ,并成并成一组一组问题问题2从已知的从已知的3 个个不同元素中每不同元素中每次取出次取出2个元个元素素 ,按照一按照一定的顺序排成定的顺序排成一列一列.问题问题1排列排列组合组合有有顺顺序序无无顺顺序序 一般地,从一般地,从n n个不同元素中取出个不同元素中取出m m(mnmn)个元)个元素素并成一组并成一组,叫做从,叫做从n n个不同元素中取出个不同元素中取出m m个元素的个元素的一个一个组合组合 排列与组合的概念排列与组合的概念有什么共同点与不同有什么共同点与不
3、同点?点?一、组合的相关概念一、组合的相关概念1 1、组合定义、组合定义:组合定义组合定义:一般地,从一般地,从n n个不同元素中取出个不同元素中取出m m(mnmn)个元素)个元素并成一组并成一组,叫做从叫做从n n个不同元素中取出个不同元素中取出m m个元素的一个个元素的一个组合组合排列定义排列定义:一般地,从一般地,从n n个不同元素中取出个不同元素中取出m(mn)m(mn)个元素,个元素,按照一按照一定的顺序排成一列定的顺序排成一列,叫做从,叫做从 n n 个不同元素中取出个不同元素中取出 m m 个元素的一个个元素的一个排排列列.共同点共同点:都要都要“从从n n个不同元素中任取个不
4、同元素中任取m m个元素个元素”不同点不同点:排列排列与元素的顺序有关,与元素的顺序有关,而组合而组合则与元素的顺序无关则与元素的顺序无关.组合与排列的区别组合与排列的区别:1.1.从从 a,b,c三个不同的元素中取出两个元素的所有组合分别是三个不同的元素中取出两个元素的所有组合分别是:ab,ac,bc 2.2.已知已知4 4个元素个元素a,b,c,d ,写出每次取出两个元素的所有组合写出每次取出两个元素的所有组合.ab c d b c d cd ab,ac,ad,bc,bd,cd(3(3个个)(6(6个个)理解组合的概念理解组合的概念2 2、组合数的定义、组合数的定义 从从n n个不同元素中
5、取出个不同元素中取出m m(mnmn)个元素的所有组合的个数,)个元素的所有组合的个数,叫做从叫做从n n个不同元素中取出个不同元素中取出m m个元素的个元素的组合数组合数,用符号,用符号 表示表示.组合数公式组合数公式:3 3、组合数公式、组合数公式例例1 1计算:计算:4 4、组合数公式的计算、组合数公式的计算例例2 2、课本课本 P 25 练习练习5题型一、简单的组合问题题型一、简单的组合问题练习、练习、现有现有1010名教师,其中男教师名教师,其中男教师6 6名,女教师名,女教师4 4名名.(1 1)现要从中选)现要从中选2 2名去参加会议,有多少种名去参加会议,有多少种不同的选法?不
6、同的选法?(2 2)现要从中选出男、女教师各)现要从中选出男、女教师各2 2名去参加名去参加会议,有多少种不同的选法?会议,有多少种不同的选法?练习:练习:平面内有平面内有9 9个点,其中个点,其中4 4个点在一条直线上,此外没有个点在一条直线上,此外没有3 3个点个点在一条直线上,过这在一条直线上,过这9 9个点可确定多少条直线?可以作多少个三角个点可确定多少条直线?可以作多少个三角形?形?说明:说明:“至少至少”“至多至多”的问题,通常用的问题,通常用 分类分类 法或间接法求解法或间接法求解.题型二、有条件限制的组合问题题型二、有条件限制的组合问题例例4、按下列条件,从按下列条件,从121
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 选修 1.2 组合 人教版 课件
限制150内