线面垂直的判定与性质(共10页).doc
《线面垂直的判定与性质(共10页).doc》由会员分享,可在线阅读,更多相关《线面垂直的判定与性质(共10页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 线面垂直知识点1.直线和平面垂直定义如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.判定定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.3.三垂线定理和它的逆定理.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直.逆定理:在平面内的一条
2、直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在该平面上的射影垂直.题型示例 【例1】 如图所示,已知点S是平面ABC外一点,例1题图ABC=90,SA平面ABC,点A在直线SB和SC上的射影分别为点E、F,求证:EFSC.【解前点津】 用分析法寻找解决问题的途径,假设EFSC成立,结合AFSC可推证SC平面AEF,这样SCAE,结合AESB,可推证AE平面SBC,因此证明AE平面SBC是解决本题的关键环节.由题设SA平面ABC,ABC=90,可以推证BCAE,结合AESB完成AE平面SBC的证明.【规范解答】【解后归纳】 题设中条件多,图形复杂,结合题设理清图形中基本元素之间的位置关
3、系是解决问题的关键.【例2】 已知:MN=AB,PQM于Q,PON于O,ORM于R,求证:QRAB.【解前点津】 由求证想判定,欲证线线垂直,方法有(1)ab,acbc;(2)a,bab;(3)三垂线定理及其逆定理.由已知想性质,知线面垂直,可推出线线垂直或线线平行.【解后归纳】 处于非常规位置图形上的三垂线定理或逆定理的应用问题,要抓住“一个面”、“四条线”.所谓“一个面”:就是要确定一个垂面,三条垂线共处于垂面之上.所谓“四条线”:就是垂线、斜线、射影以及平面内的第四条线,这四条线中垂线是关键的一条线,牵一发而动全身,应用时一般可按下面程序进行操作:确定垂面、抓准斜线、作出垂线、连结射影,
4、寻第四条线.【例3】 已知如图(1)所示,矩形纸片AAA1A1,B、C、B1、C1 分别为AA,A1A的三等分点,将矩形纸片沿BB1,CC1折成如图(2)形状(正三棱柱),若面对角线AB1BC1,求证:A1CAB1.例3题图解(1)【解前点津】 题设主要条件是AB1BC,而结论是AB1A1C,题设,题断有对答性,可在ABB1A1上作文章,只要取A1B1中点D1,就把异面直线AB1与BC1垂直关系转换到ABB1A1同一平面内AB1与BD1垂直关系,这里要感谢三垂线逆定理.自然想到题断AB1与A1C垂直用同法(对称原理)转换到同一平面,取AB中点D即可,只要证得A1D垂直于AB1,事实上DBD1A
5、1,为平行四边形,解题路子清楚了.【解后归纳】 证线线垂直主要途径是:(1)三垂线正逆定理,(2)线面,线线垂直互相转化.利用三垂线正逆定理完成线线归面工作,在平面内完成作解任务.证线线垂直,线面垂直,常常利用线面垂直,线线垂直作为桥梁过渡过来,这种转化思想有普遍意义,利用割补法把几何图形规范化便于应用定义定理和公式,也是不容忽视的常用方法.例4题图【例4】 空间三条线段AB,BC,CD,ABBC,BCCD,已知AB=3,BC=4,CD=6,则AD的取值范围是 .【解前点津】 如图,在直角梯形ABCD1中,CD1=6,AD1的长是AD的最小值,其中AHCD1,AH=BC=4,HD1=3,AD1
6、=5;在直角AHD2中,CD2=6,AD2是AD的最大值为【解后归纳】 本题出题形式新颖、灵活性大,很多学生对此类题感到无从入手,其实冷静分析,找出隐藏的条件很容易得出结论.对应训练 分阶提升一、基础夯实1.设M表示平面,a、b表示直线,给出下列四个命题: bM bM.其中正确的命题是 ( )A. B. C. D.2.下列命题中正确的是 ( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另
7、一条直线必垂直于这个平面3.如图所示,在正方形ABCD中,E、F分别是AB、BC的中点.现在沿DE、DF及EF把ADE、CDF和BEF折起,使A、B、C三点重合,重合后的点记为P.那么,在四面体PDEF中,必有 ( )第3题图A.DP平面PEF B.DM平面PEF C.PM平面DEF D.PF平面DEF4.设a、b是异面直线,下列命题正确的是 ( )A.过不在a、b上的一点P一定可以作一条直线和a、b都相交B.过不在a、b上的一点P一定可以作一个平面和a、b都垂直C.过a一定可以作一个平面与b垂直D.过a一定可以作一个平面与b平行5.如果直线l,m与平面,满足:l=,l,m和m,那么必有 (
8、)A.且lm B.且m C.m且lm D.且6.AB是圆的直径,C是圆周上一点,PC垂直于圆所在平面,若BC=1,AC=2,PC=1,则P到AB的距离为 ( )A.1 B.2 C. D.7.有三个命题:垂直于同一个平面的两条直线平行;过平面的一条斜线l有且仅有一个平面与垂直; 异面直线a、b不垂直,那么过a的任一个平面与b都不垂直其中正确命题的个数为 ( )A.0 B.1 C.2 D.38.d是异面直线a、b的公垂线,平面、满足a,b,则下面正确的结论是 ( )A.与必相交且交线md或m与d重合B.与必相交且交线md但m与d不重合C.与必相交且交线m与d一定不平行D.与不一定相交9.设l、m为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 垂直 判定 性质 10
限制150内