(最新)圆锥曲线方程知识点总结.pdf
《(最新)圆锥曲线方程知识点总结.pdf》由会员分享,可在线阅读,更多相关《(最新)圆锥曲线方程知识点总结.pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 8.圆锥曲线方程知识要点一、椭圆方程.1.椭圆方程的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2FFFFaPFPFFFaPFPFFFaPFPF椭圆的标准方程:i.中心在原点,焦点在x 轴上:)0(12222babyax.ii.中心在原点,焦点在y 轴上:)0(12222babxay.一般方程:)0,0(122BAByAx.椭圆的标准方程:12222byax的参数方程为sincosbyax(一象限应是属于20).顶点:),0)(0,(ba或)0,)(,0(ba.轴:对称轴:x 轴,y 轴;长轴长a2,短轴长b2.焦点:)0,)(0,(cc或),0)(,0(c
2、c.焦距:2221,2baccFF.准线:cax2或cay2.离心率:)10(eace.焦点半径:i.设),(00yxP为椭圆)0(12222babyax上的一点,21,FF为左、右焦点,则ii.设),(00yxP为椭圆)0(12222baaybx上的一点,21,FF为上、下焦点,则由椭圆第二定义可知:)0()(),0()(0002200201xaexxcaepFxexacaxepF归结起来为“左加右减”.注意:椭圆参数方程的推导:得)sin,cos(baN方程的轨迹为椭圆.通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(2222abcabd和),(2abc 共 离 心 率 的 椭 圆 系
3、 的 方 程:椭 圆)0(12222babyax的 离 心 率 是)(22bacace,方 程ttbyax(2222是大于 0 的参数,)0ba的离心率也是ace我们称此方程为共离心率的椭圆系方程.若 P 是椭圆:12222byax上的点.21,FF为焦点,若21PFF,则21FPF的面积为2tan2b(用余弦定理与aPFPF221可得).若是双曲线,则面积为2cot2b.0201,exaPFexaPF0201,eyaPFeyaPF二、双曲线方程.1.双曲线的第一定义:的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222FFFFaPFPFFFaPFPFFFaPFPF 双
4、曲线 标准方程:)0,(1),0,(122222222babxaybabyax.一般方程:)0(122ACCyAx.i.焦点在 x 轴上:顶点:)0,(),0,(aa焦点:)0,(),0,(cc准线方程cax2渐近线方程:0byax或02222byaxii.焦点在 y 轴上:顶点:),0(),0(aa.焦点:),0(),0(cc.准线方程:cay2.渐近线方程:0bxay或02222bxay,参数方程:tansecbyax或sectanaybx.轴yx,为对称轴,实轴长为2a,虚轴长为2b,焦距 2c.离心率ace.准线距ca22(两准线的距离);通径ab22.参数关系acebac,222.焦
5、点半径公式:对于双曲线方程12222byax(21,FF分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则:(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)aexMFaexMF0201构成满足aMFMF221aexFMaexFM0201aeyFMaeyFMaeyMFaeyMF02010201等轴双曲线:双曲线222ayx称为等轴双曲线,其渐近线方程为xy,离心率2e.共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.2222byax与2222byax互为共轭双曲线,它们具有共同的渐近线:02222byax.共渐近线的双曲线系方程
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 圆锥曲线 方程 知识点 总结
限制150内