《人教版高一数学知识点整理精选最新5篇.docx》由会员分享,可在线阅读,更多相关《人教版高一数学知识点整理精选最新5篇.docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版高一数学知识点整理精选最新5篇 数学这个科目始终是同学们又爱又恨的科目,学的好的同学靠它来与其它同学拉开分数,学的差的同学则在数学上失分许多;在平常的学习和考试中同学们要擅长总结学问点,这样有助于帮助同学们学好数学。下面就是我给大家带来的高一数学学问点总结,希望能帮助到大家! 人教版高一数学学问点1 多面体 棱柱 棱柱的定义:有两个面相互平行,其余各面都是四边形,并且每两个四边形的公共边都相互平行,这些面围成的几何体叫做棱柱。 棱柱的性质 (1)侧棱都相等,侧面是平行四边形 (2)两个底面与平行于底面的截面是全等的多边形 (3)过不相邻的两条侧棱的截面(对角面)是平行四边形 棱锥 棱锥的
2、定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥 棱锥的性质: (1)侧棱交于一点。侧面都是三角形 (2)平行于底面的截面与底面是相像的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方 正棱锥 正棱锥的定义:假如一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。 正棱锥的性质: (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。 (3)多个特别的直角三角形 esp: a、相邻两侧棱相互垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。 b、四面体
3、中有三对异面直线,若有两对相互垂直,则可得第三对也相互垂直。且顶点在底面的射影为底面三角形的垂心。 人教版高一数学学问点2 直线和平面垂直 直线和平面垂直的定义:假如一条直线a和一个平面内的随意一条直线都垂直,我们就说直线a和平面相互垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。 直线与平面垂直的判定定理:假如一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。 直线与平面垂直的性质定理:假如两条直线同垂直于一个平面,那么这两条直线平行。直线和平面平行没有公共点 直线和平面平行的定义:假如一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。 直线和平面平行的
4、判定定理:假如平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。 直线和平面平行的性质定理:假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 人教版高一数学学问点3 空间直角坐标系定义: 过定点O,作三条相互垂直的数轴,它们都以O为原点且一般具有相同的长度单位、这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴、通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐
5、标系,点O叫做坐标原点。 1、右手直角坐标系 右手直角坐标系的建立规则:x轴、y轴、z轴相互垂直,分别指向右手的拇指、食指、中指; 已知点的坐标P(x,y,z)作点的方法与步骤(路径法): 沿x轴正方向(x>0时)或负方向(x<0时)移动|x|个单位,再沿y轴正方向(y>0时)或负方向(y<0时)移动|y|个单位,最终沿x轴正方向(z>0时)或负方向(z<> 已知点的位置求坐标的方法: 过P作三个平面分别与x轴、y轴、z轴垂直于A,B,C,点A,B,C在x轴、y轴、z轴的坐标分别是a,b,c则(a,b,c)就是点P的坐标。 2、在x轴上的点分别可以表示
6、为(a,0,0),(0,b,0),(0,0,c)。 在坐标平面xOy,xOz,yOz内的点分别可以表示为(a,b,0),(a,0,c),(0,b,c)。 3、点P(a,b,c)关于x轴的对称点的坐标为(a,-b,-c); 点P(a,b,c)关于y轴的对称点的坐标为(-a,b,-c); 点P(a,b,c)关于z轴的对称点的坐标为(-a,-b,c); 点P(a,b,c)关于坐标平面xOy的对称点为(a,b,-c); 点P(a,b,c)关于坐标平面xOz的对称点为(a,-b,c); 点P(a,b,c)关于坐标平面yOz的对称点为(-a,b,c); 点P(a,b,c)关于原点的对称点(-a,-b,-c
7、)。 4、已知空间两点P(x1,y1,z1),Q(x2,y2,z2),则线段PQ的中点坐标为 5、空间两点间的距离公式 已知空间两点P(x1,y1,z1),Q(x2,y2,z2),则两点的距离为特别点A(x,y,z)到原点O的距离为 6、以C(x0,y0,z0)为球心,r为半径的球面方程为 特别地,以原点为球心,r为半径的球面方程为x2+y2+z2=r2 人教版高一数学学问点4 1.函数的基本概念 (1)函数的定义:设A、B是非空数集,假如根据某种确定的对应关系f,使对于集合A中的随意一个数x,在集合B中都有确定的数f(x)和它对应,那么称f:AB为从集合A到集合B的一个函数,记作:y=f(x
8、),xA. (2)函数的定义域、值域 在函数y=f(x),xA中,x叫自变量,x的取值范围A叫做定义域,与x的值对应的y值叫函数值,函数值的集合f(x)|xA叫值域.值域是集合B的子集. (3)函数的三要素:定义域、值域和对应关系. (4)相等函数:假如两个函数的定义域和对应关系完全一样,则这两个函数相等;这是推断两函数相等的依据. 2.函数的三种表示方法 表示函数的常用方法有:解析法、列表法、图象法. 3.映射的概念 一般地,设A、B是两个非空的集合,假如按某一个确定的对应关系f,使对于集合A中的随意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个
9、映射. 留意: 一个方法 求复合函数y=f(t),t=q(x)的定义域的方法: 若y=f(t)的定义域为(a,b),则解不等式得a 两个防范 (1)解决函数问题,必需优先考虑函数的定义域. (2)用换元法解题时,应留意换元前后的等价性. 三个要素 函数的三要素是:定义域、值域和对应关系.值域是由函数的定义域和对应关系所确定的.两个函数的定义域和对应关系完全一样时,则认为两个函数相等.函数是特别的映射,映射f:AB的三要素是两个集合A、B和对应关系f. 人教版高一数学学问点5 集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。 例如:1、分散的人或事物聚集到一起;
10、使聚集:紧急。 2、数学名词。一组具有某种共同性质的数学元素:有理数的。 3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,特地探讨集合的理论叫做集合论。康托(Cantor,G.F.P.,1845年1918年,德国数学家先驱,是集合论的,目前集合论的基本思想已经渗透到现代数学的全部领域。 集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。集合 集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这
11、一集合的元素(或简称为元)。 元素与集合的关系有“属于”与“不属于”两种。 集合与集合之间的关系 某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。说明一下:假如集合A的全部元素同时都是集合B的元素,则A称作是B的子集,写作A?B。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A?B。中学教材课本里将?符号下加了一个符号,不要混淆,考试时还是要以课本为准。全部男人的集合是全部人的集合的真子集。 人教版高一数学学问点整理精选最新5篇本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第9页 共9页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页
限制150内