【四维备课】人教数学必修四第二章《平面向量》课件(复习课).ppt
《【四维备课】人教数学必修四第二章《平面向量》课件(复习课).ppt》由会员分享,可在线阅读,更多相关《【四维备课】人教数学必修四第二章《平面向量》课件(复习课).ppt(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.6平面向量-复习知识结构知识结构要点复习要点复习例题解析例题解析巩固练习巩固练习平面向量复习平面向量复习平平 面面 向向 量量 复复 习习知识结构知识结构 表示表示 运算运算 实数与向量的积实数与向量的积 向量加法与减法向量加法与减法 向量的数量积向量的数量积 平行四边形法则平行四边形法则向量平行的充要条件向量平行的充要条件平面向量的平面向量的基本定理基本定理三三 角角 形形 法法 则则向量的三种表示向量的三种表示平平 面面 向向 量量 复复 习习向量定义:向量定义:既有既有大小大小又有又有方向方向的量叫向量。的量叫向量。重要概念:重要概念:(1)零向量:)零向量:长度为长度为0的向量,记
2、作的向量,记作0.(2)单位向量:)单位向量:长度为长度为1个单位长度的向量个单位长度的向量.(3)平行向量:)平行向量:也叫共线向量,方向相同或相反也叫共线向量,方向相同或相反的非零向量的非零向量.(4)相等向量:)相等向量:长度相等且方向相同的向量长度相等且方向相同的向量.(5)相反向量:)相反向量:长度相等且方向相反的向量长度相等且方向相反的向量.注意:注意:1)零向量是一个特殊的向量;)零向量是一个特殊的向量;2)零向量与非零向量的区别。)零向量与非零向量的区别。知识要点知识要点平平 面面 向向 量量 复复 习习知识要点知识要点几何表示 :有向线段有向线段向量的表示字母表示 坐标表示
3、:(x,y)若若 A(x1,y1),B(x2,y2)则则 AB=(x2 x1,y2 y1)平平 面面 向向 量量 复复 习习知识要点知识要点向量的模(长度)向量的模(长度)1.设设 a=(x ,y),则则2.若表示向量若表示向量 a 的起点和终点的坐标分别的起点和终点的坐标分别 为为A A(x1,y1)、B(x2,y2),则,则平平 面面 向向 量量 复复 习习巩固练习巩固练习练习练习1 已知向量已知向量a=(5 5,m m)的长度是)的长度是1313,求,求m.m.答案:答案:m=m=12 12平平 面面 向向 量量 复复 习习知识要点知识要点1.向量的加法运算向量的加法运算ABC AB+B
4、C=三角形法则三角形法则OABC OA+OB=平行四边形法则平行四边形法则坐标运算坐标运算:则则a +b=重要结论:重要结论:AB+BC+CA=0设设 a=(x1,y1),b=(x2,y2)(x1+x2,y1+y2)AC OC平平 面面 向向 量量 复复 习习知识要点知识要点2.向量的减法运算向量的减法运算1)减法法则:)减法法则:OABOAOB=2)坐标运算)坐标运算:若若 a=(x1,y1),b=(x2,y2)则则a b=3 3.加加法减法运算率法减法运算率a+b=b+a(a+b)+c=a+(b+c)1)交换律:)交换律:2)结合律:)结合律:BA(x1 x2,y1 y2)平平 面面 向向
5、 量量 复复 习习例题解析例题解析例例1 化简化简(1)()(AB+MB)+BO+OM (2)AB+DA+BD BCCA分析分析利用加利用加法减法运算法则,借助结论法减法运算法则,借助结论AB=AP+PB;AB=OBOA;AB+BC+CA=0进行变形进行变形.解:解:原式原式=AB+(BO+OM+MB)=AB+0=AB(1)(2)原式原式=AB+BD+DA(BC+CA)=0BA=AB例1平平 面面 向向 量量 复复 习习巩固练习巩固练习练习练习2 如图,正六边形如图,正六边形ABCDEF中,中,AB=a、BC=b、AF=c,用,用a、b、c表示向量表示向量AD、BE、BF、FC.AFEDCBa
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四维备课 平面向量 备课 数学 必修 第二 平面 向量 课件 复习
限制150内