1.3.1 函数的单调性与导数.ppt
《1.3.1 函数的单调性与导数.ppt》由会员分享,可在线阅读,更多相关《1.3.1 函数的单调性与导数.ppt(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.求过曲线求过曲线y=x3-2x上的点上的点(1,-1)的切线方的切线方程程求过某点的曲线的切线方程时,除了要判断该点是否求过某点的曲线的切线方程时,除了要判断该点是否在曲线上,还要分在曲线上,还要分“该点是切点该点是切点”和和“该点不是切点该点不是切点”两种两种情况进行讨论,解法复制。若设情况进行讨论,解法复制。若设M(x0,y0)为曲线为曲线y=f(x)上上一点,则以一点,则以M为切点的曲线的切线方程可设为为切点的曲线的切线方程可设为y-y0=f(x)(x-x0),利用此切线方程可以简化解题,避免,利用此切线方程可以简化解题,避免疏漏。疏漏。1.3.1 函数的单调性与导数函数的单调性与导
2、数(4).对数函数的导数对数函数的导数:(5).指数函数的导数指数函数的导数:(3).三角函数三角函数:(1).常函数:常函数:(C)/0,(c为常数为常数);(2).幂函数幂函数:(xn)/nxn 1一、复习回顾:基本初等函数的导数公式一、复习回顾:基本初等函数的导数公式函数函数 y=f(x)在给定区间在给定区间 G 上,当上,当 x 1、x 2 G 且且 x 1 x 2 时时yxoabyxoab1)都有)都有 f(x 1)f(x 2),则则 f(x)在在G 上是增函数上是增函数;2)都有)都有 f(x 1)f(x 2),则则 f(x)在在G 上是减函数上是减函数;若若 f(x)在在G上是增
3、函数或减函数,上是增函数或减函数,则则 f(x)在在G上具有严格的单调性。上具有严格的单调性。G 称为称为单调区间单调区间G=(a,b)二、复习引入二、复习引入:oyxyox1oyx1在(,0)和(0,)上分别是减函数。但在定义域上不是减函数。在(,1)上是减函数,在(1,)上是增函数。在(,)上是增函数概念回顾概念回顾画出下列函数的图像,并根据图像指出每个函数的单调区间画出下列函数的图像,并根据图像指出每个函数的单调区间(1)函数的单调性也叫函数的增减性;函数的单调性也叫函数的增减性;(2)函数的单调性是对某个区间而言的,它是个局部概函数的单调性是对某个区间而言的,它是个局部概 念。这个区间
4、是定义域的子集。念。这个区间是定义域的子集。(3)单调区间:针对自变量单调区间:针对自变量x而言的。而言的。若函数在此区间上是增函数,则为单调递增若函数在此区间上是增函数,则为单调递增区区间;间;若函数在此区间上是减函数,则为单调递减区间。若函数在此区间上是减函数,则为单调递减区间。以前以前,我们用定义来判断函数的单调性我们用定义来判断函数的单调性.在假设在假设x1x2的的前提下前提下,比较比较f(x1)f(x2)与的大小与的大小,在函数在函数y=f(x)比较复比较复杂的情况下杂的情况下,比较比较f(x1)与与f(x2)的大小并不很容易的大小并不很容易.如果如果利用导数来判断函数的单调性就比较
5、简单利用导数来判断函数的单调性就比较简单.观观 察察:下图下图(1)表示高台跳水运动员的高度表示高台跳水运动员的高度 h 随时间随时间 t 变化变化的函数的函数 的图象的图象,图图(2)表示高台跳水表示高台跳水运动员的速度运动员的速度 v 随时间随时间 t 变化的函数变化的函数 的图的图象象.运动员从起跳到最高点运动员从起跳到最高点,以及从最高点到入水这两段时以及从最高点到入水这两段时间的运动状态有什么区别间的运动状态有什么区别?aabbttvhOO 运动员从起跳到运动员从起跳到最高点最高点,离水面的高度离水面的高度h随时间随时间t 的增加而增加的增加而增加,即即h(th(t)是增函数是增函数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.3.1 函数的单调性与导数 1.3 函数 调性 导数
限制150内