3.3.1二元一次不等式(组)与平面区域(2).ppt
《3.3.1二元一次不等式(组)与平面区域(2).ppt》由会员分享,可在线阅读,更多相关《3.3.1二元一次不等式(组)与平面区域(2).ppt(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3.3.1 3.3.1 二元一次不等式二元一次不等式(组)与平面区域(组)与平面区域(2 2)0 xyo0 xyo 二元一次不等式表示平面区域:二元一次不等式表示平面区域:直线某一侧所有点组成的平面区域。直线某一侧所有点组成的平面区域。画图时画图时应非常准确应非常准确,否则将得不到正确结果。否则将得不到正确结果。判定方法:判定方法:直线定界,特殊点定域。直线定界,特殊点定域。复习复习 二元一次不等式组表示平面区域:二元一次不等式组表示平面区域:各个不等式所表示平面区域的公共部分。各个不等式所表示平面区域的公共部分。-若不等式中不含有等号时,则边界应若不等式中不含有等号时,则边界应画成虚线画成虚
2、线,解析:解析:由于在异侧,则(由于在异侧,则(1 1,2 2)和()和(1 1,1 1)代入代入3x-y+m 3x-y+m 所得数值所得数值异号异号,则有(则有(3-2+m3-2+m)()(3-1+m3-1+m)0 0所以(所以(m+1m+1)(m+2)0(m+2)0即:即:-2m-1-2m-1试确定试确定m m的范围,使点(的范围,使点(1 1,2 2)和)和(1 1,1 1)在)在3x-y+m=03x-y+m=0的的异侧异侧。例例1 1、变式变式:若在若在同侧同侧,m m的范围又是什么呢?的范围又是什么呢?解析解析:由于在同侧,则(由于在同侧,则(1 1,2 2)和()和(1 1,1 1
3、)代入代入3x-y+m 3x-y+m 所得数值所得数值同号同号,则有(则有(3-2+m3-2+m)()(3-1+m3-1+m)0 0所以(所以(m+1m+1)(m+2)(m+2)0 0即:即:m-2m-2或或m m-1-1例例2 2、要将两种大小不同的钢板截成三种规格,每张钢板、要将两种大小不同的钢板截成三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:可同时截得三种规格的小钢板的块数如下表所示:A A规格规格规格规格规格规格第一种钢板第一种钢板2 21 11 1第二种钢板第二种钢板1 12 23 3今需要三种规格的成品分别为今需要三种规格的成品分别为1515,1818,2727块
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 3.3 二元 一次 不等式 平面 区域
限制150内