5.3.2_命题、定理、证明.ppt
《5.3.2_命题、定理、证明.ppt》由会员分享,可在线阅读,更多相关《5.3.2_命题、定理、证明.ppt(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、问题问题1请同学读出下列语句(1)如果两条直线都与第三条直线平行,那么这两 条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边都加同一个数,结果仍是等式像这样判断一件事情的语句,叫做命题(像这样判断一件事情的语句,叫做命题(proposition).命题的概念命题的概念下列语句是命题吗?下列语句是命题吗?熊猫没有翅膀熊猫没有翅膀.大象是红色的大象是红色的同位角相等同位角相等.连接连接A A、B B两点两点.你多大了?你多大了?句子句子 能判断一件事情能判断一件事情.是命题是命题句子句子 不能判断一件事情不能判断一件事情.不是命题不是命题 请你吃饭
2、。请你吃饭。问题问题2 判断下列语句是不是命题?(1)你饭吃了吗?()(2)两点之间,线段最短。()(3)请画出两条互相平行的直线。()(4)过直线外一点作已知直线的垂线。()(5)如果两个角的和是90,那么这两个角互余。()(6)对顶角不相等。()什么是命题?什么是命题?判断一件事情的语句,叫做判断一件事情的语句,叫做命题命题.你能举一些不是你能举一些不是命题的例子吗?命题的例子吗?问题问题4请同学们观察一组命题,并思考命题是由几部分组成的?(1)两条平行线被第三条直线所截,同旁内角互补;(2)如果两个角的和是90,那么这两个角互余;(3)等式两边都减去同一个数,结果仍是等式命题是由命题是由
3、题设题设和和结论结论两部分组成。两部分组成。题设题设是已知事是已知事项,项,结论结论是由已知事项推出的事项是由已知事项推出的事项。两直线平行,两直线平行,同位角相等。同位角相等。题设题设结论结论 数学中的命题常可以写成“如果,那么”的形式“如果”后接的部分是题设,“那么”后接的部分是结论 下列命题中的题设是什么?结论是什么?下列命题中的题设是什么?结论是什么?如果如果ab,bc,那么,那么a=c.题设是题设是:如果两个角是邻补角,那么如果两个角是邻补角,那么这两个角这两个角互补互补结论是结论是:题设是题设是:结论是结论是:两个角是邻补角两个角是邻补角这两个角这两个角互补互补ab,bca=c 下
4、列命题中的题设是什么?结论是什么?下列命题中的题设是什么?结论是什么?如果如果两个角是对顶角两个角是对顶角,那么,那么这两个角相等这两个角相等.题设是题设是:对顶角相等对顶角相等结论是结论是:题设是题设是:结论是结论是:同位角相等同位角相等.如果如果两个角是同位角,两个角是同位角,那么那么这两个角相等这两个角相等.两个角是对顶角两个角是对顶角这两个角相等这两个角相等两个角是同位角两个角是同位角这两个角相等这两个角相等问题中哪些命题是正确的,哪些命题是错误的?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互
5、补;(5)对顶角相等 问题问题请同学们举例说出一些真命题和假命题命题的真假命题的真假真命真命题题:如果题设成立,那么结论一定成立,这样的命题叫做真命题 假命假命题题:如果题设成立时,不能保证结论一定成立,这样的命题叫做假命题5 5)若)若A=BA=B,则,则2A=2B2A=2B()7 7)同旁内角互补()同旁内角互补()4 4)两点可以确定一条直线()两点可以确定一条直线()1 1)互为邻补角的两个角的平分线互相垂直()互为邻补角的两个角的平分线互相垂直()2 2)一个角的补角大于这个角()一个角的补角大于这个角()2 2:判断下列命题的真假。真的用:判断下列命题的真假。真的用“”,假的用假的
6、用“表示。表示。3 3)相等的两个角是对顶角()相等的两个角是对顶角()6 6)锐角和钝角互为补角()锐角和钝角互为补角()有些命题的正确性是人们在长期有些命题的正确性是人们在长期实践中总结实践中总结出来的,出来的,这样的这样的真命题叫做真命题叫做公理。公理。有些命题有些命题的正确性是经过推理经过推理证实证实的,这样的这样的真命题叫做真命题叫做定理。定理。公理举例:公理举例:经过两点有且只有一条直线。经过两点有且只有一条直线。2、线段公理:、线段公理:两点的所有连线中,线段最短。两点的所有连线中,线段最短。4、平行线判定公理:、平行线判定公理:同位角相等,两直线平行。同位角相等,两直线平行。5
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 5.3 命题 定理 证明
限制150内