2014-考研-真题-必备上海财经大学中级微观经济学课程(叶正茂)第五章.pptx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2014-考研-真题-必备上海财经大学中级微观经济学课程(叶正茂)第五章.pptx》由会员分享,可在线阅读,更多相关《2014-考研-真题-必备上海财经大学中级微观经济学课程(叶正茂)第五章.pptx(109页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、会计学12014-考研考研-真题真题-必备上海财经大学中级必备上海财经大学中级微观微观(wigun)经济学课程课件经济学课程课件(叶正茂叶正茂)第五章第五章PPT课件课件第一页,共109页。第1页/共109页第二页,共109页。n n例例例例:齐王与田忌赛马的博弈齐王与田忌赛马的博弈齐王与田忌赛马的博弈齐王与田忌赛马的博弈(b y)(b y)n n 齐王齐王齐王齐王 田忌田忌田忌田忌n n A1 A1 好好好好 B1 B1 好好好好 n n A2 A2 中中中中 B2 B2 中中中中n n A3 A3 下下下下 B3 B3 下下下下n n A1 A1 好好好好 B3 B3 下下下下 n n A
2、2 A2 中中中中 B1 B1 好好好好 n n A3 A3 下下下下 B2 B2 中中中中第2页/共109页第三页,共109页。Some Applications of Game Theoryn nThe study of oligopolies(industries containing only a few firms)n nThe study of cartels;e.g.OPECn nThe study of externalities;e.g.using a common resource such as a fishery.n nThe study of military str
3、ategies.第3页/共109页第四页,共109页。What is a Game?n nA game consists ofn na set of playersn na set of strategies for each playern nthe payoffs to each player for every possible list of strategy choices by the players.第4页/共109页第五页,共109页。n n怎样描述一个博弈?怎样描述一个博弈?n n博弈三大要素博弈三大要素n n 参与者或局中人参与者或局中人n n 参与者的策略(空间)参与者的
4、策略(空间)n n 报酬或收益或支付函数:作报酬或收益或支付函数:作为博弈的结局为博弈的结局(jij),每个,每个参与者都得到各自的报酬或收参与者都得到各自的报酬或收益益n n可以用支付矩阵(报酬矩阵)可以用支付矩阵(报酬矩阵)描述一个博弈描述一个博弈第5页/共109页第六页,共109页。n n 乙乙n n 合作合作 不合作不合作n n 合作合作 10,10 6,12n n 甲甲n n 不合作不合作 12,6 8,8n n 第一个数字第一个数字(shz)代表甲的报酬;代表甲的报酬;n n 第二个数字第二个数字(shz)代表乙的报酬;代表乙的报酬;第6页/共109页第七页,共109页。Two-P
5、layer Gamesn nA game with just two players is a two-player game.n nWe will study only games in which there are two players,each of whom can choose between only two strategies.第7页/共109页第八页,共109页。n nThe players are called A and B.n nPlayer A has two strategies,called“Up”and“Down”.n nPlayer B has two s
6、trategies,called“Left”and“Right”.n nThe table showing the payoffs to both players for each of the four possible strategy combinations is the games payoff matrix.第8页/共109页第九页,共109页。An Example of a Two-Player GameThis is thegamespayoff matrix.Player BPlayer APlayer As payoff is shown first.Player Bs p
7、ayoff is shown second.LRUD(3,9)(0,0)(1,8)(2,1)第9页/共109页第十页,共109页。An Example of a Two-Player GameE.g.if A plays Up and B plays Right then As payoff is 1 and Bs payoff is 8.This is thegamespayoff matrix.Player BPlayer ALRUD(3,9)(0,0)(1,8)(2,1)第10页/共109页第十一页,共109页。An Example of a Two-Player GameAnd if
8、A plays Down and B plays Right then As payoff is 2 and Bs payoff is 1.This is thegamespayoff matrix.Player BPlayer ALRUD(3,9)(0,0)(1,8)(2,1)第11页/共109页第十二页,共109页。Player BPlayer AA play of the game is a pair such as(U,R)where the 1st element is the strategychosen by Player A and the 2nd is the strateg
9、y chosen by Player B.LRUD(3,9)(0,0)(1,8)(2,1)第12页/共109页第十三页,共109页。What plays are we likely to see for thisgame?Player BPlayer ALRUD(3,9)(0,0)(1,8)(2,1)第13页/共109页第十四页,共109页。An Example of a Two-Player GamePlayer BPlayer AIs(U,R)alikely play?LRUD(3,9)(0,0)(1,8)(2,1)第14页/共109页第十五页,共109页。An Example of a
10、Two-Player GamePlayer BPlayer AIf B plays Right then As best reply is Downsince this improves As payoff from 1 to 2.So(U,R)is not a likely play.Is(U,R)alikely play?LRUD(3,9)(0,0)(1,8)(2,1)第15页/共109页第十六页,共109页。An Example of a Two-Player GamePlayer BPlayer AIs(D,R)alikely play?LRUD(3,9)(0,0)(1,8)(2,1)
11、第16页/共109页第十七页,共109页。An Example of a Two-Player GamePlayer BPlayer AIs(D,R)alikely play?If B plays Right then As best reply is Down.LRUD(3,9)(0,0)(1,8)(2,1)第17页/共109页第十八页,共109页。An Example of a Two-Player GamePlayer BPlayer AIf B plays Right then As best reply is Down.If A plays Down then Bs best rep
12、ly is Right.So(D,R)is a likely play.Is(D,R)alikely play?LRUD(3,9)(0,0)(1,8)(2,1)第18页/共109页第十九页,共109页。An Example of a Two-Player GamePlayer BPlayer AIs(D,L)alikely play?LRUD(3,9)(0,0)(1,8)(2,1)第19页/共109页第二十页,共109页。An Example of a Two-Player GamePlayer BPlayer AIf A plays Down then Bs best reply is Ri
13、ght,so(D,L)is not a likely play.Is(D,L)alikely play?LRUD(3,9)(0,0)(1,8)(2,1)第20页/共109页第二十一页,共109页。An Example of a Two-Player GamePlayer BPlayer AIs(U,L)alikely play?LRUD(3,9)(0,0)(1,8)(2,1)第21页/共109页第二十二页,共109页。An Example of a Two-Player GamePlayer BPlayer AIf A plays Up then Bs best reply is Left.I
14、s(U,L)alikely play?LRUD(3,9)(0,0)(1,8)(2,1)第22页/共109页第二十三页,共109页。An Example of a Two-Player GamePlayer BPlayer AIf A plays Up then Bs best reply is Left.If B plays Left then As best reply is Up.So(U,L)is a likely play.Is(U,L)alikely play?LRUD(3,9)(0,0)(1,8)(2,1)第23页/共109页第二十四页,共109页。5.2 Nash Equilib
15、rium-参与参与(cny)人同时采取行动人同时采取行动n nA play of the game where each strategy is a best reply to the other is a Nash equilibrium.n nOur above example has two Nash equilibria;(U,L)and(D,R).n n纳什均衡是指若其他参与者不改变策略,任何(rnh)一个参加者都不会改变自己的策略的均衡状态。第24页/共109页第二十五页,共109页。An Example of a Two-Player GamePlayer BPlayer A(U
16、,L)and(D,R)are both Nash equilibria forthe game.LRUD(3,9)(0,0)(1,8)(2,1)第25页/共109页第二十六页,共109页。An Example of a Two-Player GamePlayer BPlayer A(U,L)and(D,R)are both Nash equilibria forthe game.But which will we see?Noticethat(U,L)is preferred to(D,R)by bothplayers.Must we then see(U,L)only?后面后面(hu mia
17、n)的序贯博弈可以说明这个问题。的序贯博弈可以说明这个问题。LRUD(3,9)(0,0)(1,8)(2,1)第26页/共109页第二十七页,共109页。5.3 占优策略占优策略(cl)均衡均衡-参与人同时采取行动参与人同时采取行动n n 乙乙n n 合合作作(hzu)不不合合作作(hzu)n n 合作合作(hzu)10,10 6,12n n 甲甲n n 不合作不合作(hzu)12,6 8,8第27页/共109页第二十八页,共109页。n n无无 论论 对对 方方 采采 取取 什什 么么 策策 略略(cl)叫叫占占优优策策略略(cl),某某参参与与者者的的唯唯一一最最优优的的策策略略(cl)n
18、n博博弈弈均均衡衡指指博博弈弈中中的的所所有有参参与与者者都都不不想想改改变变自自己己的的策策略略(cl)的一种状态。的一种状态。n n由由博博弈弈中中的的所所有有参参与与者者的的占占优优策策略略(cl)组组合合所所构构成成的的均均衡衡就就是是占占优优策策略略(cl)均均衡。衡。n n 只只要要每每一一参参与与者者都都具具有有占占优优策策略略(cl)的的话话,那那么么,该该博博 弈弈 一一 定定 存存 在在 占占 优优 策策 略略(cl)均衡。均衡。第28页/共109页第二十九页,共109页。n n占占优优策策略略均均衡衡与与纳纳什什均均衡衡的的比比较:较:n n占占优优策策略略均均衡衡一一定
19、定(ydng)是是纳纳什什均均衡衡;但但纳纳什什均均衡衡不不一一定定(ydng)是占优策略均衡。是占优策略均衡。n n占占优优策策略略均均衡衡是是比比纳纳什什均均衡衡更更强的一个博弈均衡概念。强的一个博弈均衡概念。第29页/共109页第三十页,共109页。The Prisoners Dilemma-占优策略均衡占优策略均衡(jnhng)的一个例子的一个例子n nTo see if Pareto-preferred outcomes must be what we see in the play of a game,consider a famous second example of a tw
20、o-player game called the Prisoners Dilemma.第30页/共109页第三十一页,共109页。The Prisoners DilemmaWhat plays are we likely to see for thisgame?ClydeBonnie(-5,-5)(-15,-1)(-1,-15)(-10,-10)SCSC第31页/共109页第三十二页,共109页。The Prisoners DilemmaIf Bonnie plays Silence then Clydes bestreply is Confess.ClydeBonnie(-5,-5)(-15
21、,-1)(-1,-15)(-10,-10)SCSC第32页/共109页第三十三页,共109页。The Prisoners DilemmaIf Bonnie plays Silence then Clydes bestreply is Confess.If Bonnie plays Confess then Clydesbest reply is Confess.ClydeBonnie(-5,-5)(-15,-1)(-1,-15)(-10,-10)SCSC第33页/共109页第三十四页,共109页。The Prisoners DilemmaSo no matter what Bonnie pla
22、ys,Clydesbest reply is always Confess.Confess is a dominant strategy for Clyde.ClydeBonnie(-5,-5)(-15,-1)(-1,-15)(-10,-10)SCSC第34页/共109页第三十五页,共109页。The Prisoners DilemmaSimilarly,no matter what Clyde plays,Bonnies best reply is always Confess.Confess is a dominant strategy forBonnie also.ClydeBonnie
23、(-5,-5)(-15,-1)(-1,-15)(-10,-10)SCSC第35页/共109页第三十六页,共109页。The Prisoners DilemmaSo the only Nash equilibrium for thisgame is(C,C),even though(S,S)givesboth Bonnie and Clyde better payoffs.The only Nash equilibrium is inefficient.ClydeBonnie(-5,-5)(-15,-1)(-1,-15)(-10,-10)SCSC第36页/共109页第三十七页,共109页。The
24、 Prisoners Dilemma囚徒困境反映了一个问题,从个人角度出发选择的囚徒困境反映了一个问题,从个人角度出发选择的占优策略占优策略(cl),从整体来看,却是最差的结局。即个人,从整体来看,却是最差的结局。即个人理性与团体理性的冲突。理性与团体理性的冲突。ClydeBonnie(-5,-5)(-15,-1)(-1,-15)(-10,-10)SCSC第37页/共109页第三十八页,共109页。n n是否存在合作解?是否存在合作解?是否存在合作解?是否存在合作解?n n一次博弈肯定不存在。一次博弈肯定不存在。一次博弈肯定不存在。一次博弈肯定不存在。n n重复博弈重复博弈重复博弈重复博弈n
25、n 无限期重复博弈中存在囚徒困境无限期重复博弈中存在囚徒困境无限期重复博弈中存在囚徒困境无限期重复博弈中存在囚徒困境(knjng)(knjng)中的合作均衡解。中的合作均衡解。中的合作均衡解。中的合作均衡解。n n 有限期重复博弈中就不存在囚徒困境有限期重复博弈中就不存在囚徒困境有限期重复博弈中就不存在囚徒困境有限期重复博弈中就不存在囚徒困境(knjng)(knjng)中的合作均衡解。(见中的合作均衡解。(见中的合作均衡解。(见中的合作均衡解。(见书上书上书上书上410410页的说明)页的说明)页的说明)页的说明)n n 但如果是不能确定终止期的有限期重复博弈模型中,纳什均衡的合作但如果是不能
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2014 考研 必备 上海财经大学 中级 微观经济学 课程 叶正茂 第五
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内