《(选修2-2)2.1.1合情推理(1-2课时)80042.ppt》由会员分享,可在线阅读,更多相关《(选修2-2)2.1.1合情推理(1-2课时)80042.ppt(52页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、推理与证明推理与证明推理推理证明证明直接证明直接证明间接证明间接证明演绎推理演绎推理合情推理合情推理推理推理福福尔尔摩摩斯斯柯南柯南4.今夜恰有东风1.今夜恰有大雾2.曹操生性多疑3.北军不善水战 弓弩利于远战草船借箭必将成功我们来推测诸葛亮“先生”的推理过程:根据一个或几个已知的判断来确定一个新的判断的思维过程就叫推理推理.已知已知判断判断前提新的新的判断判断结论2.2.由三角形内角和为由三角形内角和为 ,凸四边形内角和为凸四边形内角和为 ,凸五边形内角和为凸五边形内角和为 ,1.1.由铜、铁、铝、金、银等金属都能导电,由铜、铁、铝、金、银等金属都能导电,3.3.地球上有生命,火星具有一些与
2、地球类地球上有生命,火星具有一些与地球类似的特征,似的特征,4.4.因为所有人都会死,苏格拉底是人,因为所有人都会死,苏格拉底是人,猜想猜想:一切金属都能导电一切金属都能导电.猜想猜想:凸凸n n边形内角和为边形内角和为 猜想猜想:火星上也有生命火星上也有生命.所以苏格拉底会死所以苏格拉底会死.归归纳纳推推理理类比类比推理推理合合情情推推理理演绎演绎推理推理2.1.12.1.1合情推理合情推理归纳、类比推理归纳、类比推理铜能导电铜能导电铝能导电铝能导电金能导电金能导电银能导电银能导电一切金属一切金属都能导电都能导电.三角形内角和三角形内角和为为凸四边形内角凸四边形内角和为和为凸五边形内角凸五边
3、形内角和为和为 凸凸n边形边形内角和为内角和为第一个数为第一个数为2第二个数为第二个数为4第三个数为第三个数为6第四个数为第四个数为8第第n个个数为数为2n.部分部分特殊特殊个性个性蛇类是用肺呼吸的鳄鱼是用肺呼吸的海龟是用肺呼吸的蜥蜴是用肺呼吸的爬行动物都是用肺呼吸的整整 体体一一 般般共共 性性 由某类事物的由某类事物的 具有某些特征具有某些特征,推出推出该类事物的该类事物的 都具有这些特征的推理都具有这些特征的推理,或或者由者由 概括出概括出 的推理的推理,称为称为归纳归纳推理推理(简称归纳简称归纳).).部分对象部分对象全部对象全部对象个别事实个别事实一般结论一般结论 由某类事物的由某类
4、事物的 具有某些特征具有某些特征,推出推出该类事物的该类事物的 都具有这些特征的推理都具有这些特征的推理,或或者由者由 概括出概括出 的推理的推理,称为称为归纳归纳推理推理(简称归纳简称归纳).).部分对象部分对象全部对象全部对象个别事实个别事实一般结论一般结论 你能举出归纳推理的例子吗?即是由部分到整体,由个别到一般的推理.观察观察下列等式下列等式6 6 6 63+33+33+33+3,8 8 8 83+5,3+5,3+5,3+5,101010103+7,3+7,3+7,3+7,归纳出归纳出一个规律:一个规律:偶数偶数=奇质数奇质数+奇质数奇质数 通过更多特例的检验,从6开始,没有出现反例.
5、大胆猜想:任何一个不小于6的偶数都等于两个奇质数的和.12=5+7,12=5+7,12=5+7,12=5+7,14=3+1114=3+1114=3+1114=3+11,16=5+1116=5+1116=5+1116=5+11陈氏定理陈氏定理哥德巴赫猜想哥德巴赫猜想(Goldbach Conjecture)在陈景润之前,关于偶数可表示为在陈景润之前,关于偶数可表示为 s s个质数的乘积个质数的乘积 与与t t个质数的乘积之和个质数的乘积之和(简简称称“s+t s+t”问题问题)之之进展情况进展情况如下如下:19201920年,挪威的布朗年,挪威的布朗(Brun)(Brun)证明了证明了 “9+9
6、 9+9”。19241924年,德国的拉特马赫年,德国的拉特马赫(Rademacher)(Rademacher)证明了证明了“7+7 7+7”。19321932年,英国的埃斯特曼年,英国的埃斯特曼(Estermann)(Estermann)证明了证明了 “6+6 6+6”。19371937年,意大利的蕾西年,意大利的蕾西(Ricei)(Ricei)先後证明了先後证明了“5+7 5+7”,“4+9 4+9”,“3+15 3+15”和和“2+366 2+366”。19381938年,苏联的布赫年,苏联的布赫 夕太勃夕太勃(Byxwrao)(Byxwrao)证明了证明了“5+5 5+5”。19401
7、940年,苏联的布赫年,苏联的布赫 夕太勃夕太勃(Byxwrao)(Byxwrao)证明了证明了 “4+4 4+4”。19481948年,匈牙利的瑞尼年,匈牙利的瑞尼(Renyi)(Renyi)证明了证明了“1+c 1+c”,其中,其中c c是一很大的自然数。是一很大的自然数。19561956年,中国的王元证明了年,中国的王元证明了 “3+4 3+4”。19571957年,中国的王元先後证明了年,中国的王元先後证明了 “3+3 3+3”和和 “2+3 2+3”。19621962年,中国的潘承洞和苏联的巴尔巴恩年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)(BapoaH)证明了证明了 “1+5
8、 1+5”,中国的,中国的王元证明了王元证明了“1+4 1+4”。19651965年,苏联的布赫年,苏联的布赫 夕太勃夕太勃(Byxwrao)(Byxwrao)和小维诺格拉多夫和小维诺格拉多夫(BHHopappB)(BHHopappB),及意大,及意大利的朋比利利的朋比利(Bombieri)(Bombieri)证明了证明了“1+3 1+3”。19661966年,中国的陈景润证明了年,中国的陈景润证明了 “1+2 1+2”。最终会由谁攻克最终会由谁攻克 “1+1 1+1”这个难题呢?现在还没法预测。这个难题呢?现在还没法预测。v皇冠明珠:歌德巴赫皇冠明珠:歌德巴赫猜想猜想自自然科学的皇后是数学然
9、科学的皇后是数学,数学的皇冠是数论数学的皇冠是数论,歌歌德巴赫猜德巴赫猜想则是想则是皇冠上的明珠皇冠上的明珠 猜想猜想猜想猜想-任何大于任何大于任何大于任何大于2 2的偶数都可的偶数都可的偶数都可的偶数都可以表示为两个素数的和以表示为两个素数的和以表示为两个素数的和以表示为两个素数的和.成语成语“一叶知秋一叶知秋”意思是从一片树叶的凋落,知道秋意思是从一片树叶的凋落,知道秋天将要来到天将要来到.比喻由比喻由细微的迹象细微的迹象看出看出整体整体形势形势的变化,由的变化,由个别个别推知推知一般一般.谚语谚语“瑞雪兆丰年瑞雪兆丰年”物理物理学中学中牛顿发现万有引力牛顿发现万有引力化学中的化学中的门捷
10、列夫元素周期表门捷列夫元素周期表天文学中天文学中开普勒行星运动定律开普勒行星运动定律应用归纳推理可以应用归纳推理可以发现新事实发现新事实,获得新结论获得新结论!歌德巴赫猜想四色定理牛顿发现万有引力门捷列夫发现元素周期律等等实验观察实验观察大胆猜想大胆猜想验证猜想验证猜想归纳推理的过程:归纳推理的过程:(1)从特殊到一般;从特殊到一般;归纳推理的特点归纳推理的特点:(3)具有或然性。具有或然性。(2)具有创造性;具有创造性;由某类事物的由某类事物的 具有某些特征具有某些特征,推出该类事物的推出该类事物的 都具有这些特征都具有这些特征的推理的推理,或者由或者由 概括出概括出 的推理的推理,称为称为
11、归纳推理归纳推理(简称归纳简称归纳).).部分对象部分对象全部对象全部对象个别事实个别事实一般结论一般结论 佛教佛教百喻经百喻经中有这样一则故事。中有这样一则故事。从前有一位从前有一位富翁想吃芒果富翁想吃芒果,打发他的仆人到果园去买打发他的仆人到果园去买,并告诉他并告诉他:要甜的要甜的,好吃的好吃的,你才买你才买.仆人拿好钱就去了仆人拿好钱就去了.到了到了果园果园,园主说园主说:我这里树上的芒果个个都是甜的我这里树上的芒果个个都是甜的,你你尝一个看尝一个看.仆人说仆人说:我尝一个怎能知道全体呢我尝一个怎能知道全体呢 我应我应当个个都尝过当个个都尝过,尝一个买一个尝一个买一个,这样最可靠这样最可
12、靠.仆人于仆人于是自己动手摘芒果是自己动手摘芒果,摘一个尝一口摘一个尝一口,甜的就都买回去甜的就都买回去.带回家去带回家去,富翁见了富翁见了,觉得非常恶心觉得非常恶心,一齐都扔了一齐都扔了.第一个芒果是甜的第一个芒果是甜的第二个芒果是甜的第二个芒果是甜的第三个芒果是甜的第三个芒果是甜的这个果园这个果园的芒果都的芒果都是甜的是甜的想一想:想一想:故事中仆人的做法实际吗?故事中仆人的做法实际吗?换作你,你会怎么做?换作你,你会怎么做?例例 1.已知数列已知数列 的第一项的第一项 =1,且且 (1,2,3,),归纳推理不但能猜归纳推理不但能猜测和发现结论,还测和发现结论,还能探索和提供解题能探索和提
13、供解题思路。思路。拓展延伸拓展延伸:这样解严谨吗?这样解严谨吗?改为解答题,归纳改为解答题,归纳的结论对你的解题思路的结论对你的解题思路有启发吗有启发吗?则这个数列的通项公式为则这个数列的通项公式为_.例例2:2:观察下图观察下图,可以发现可以发现1+3+(2n1)=n21+3=4=22,1=12,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,1 2 3 4 5 6 你能否从中归纳出一般性法则你能否从中归纳出一般性法则?例例3 3:类比平面内直角三角形的勾股定理,:类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想试给出空间中四面体性质的猜想a a
14、b bc co oA AB BC Cs s1 1s s2 2s s3 3c c2 2=a=a2 2+b+b2 2S S2 2ABC ABC=S=S2 2AOBAOB+S+S2 2AOCAOC+S+S2 2BOCBOC猜想猜想:?总结:总结:1.进行进行类比推理类比推理的的步骤步骤:(1)找出两类对象之间可以确切表述的相似特征;找出两类对象之间可以确切表述的相似特征;(2)用一类对象的已知特征去猜测另一类对象的特征,用一类对象的已知特征去猜测另一类对象的特征,从而得出一个猜想;从而得出一个猜想;(3)检验这个猜想检验这个猜想.2、类比推理的一般模式、类比推理的一般模式:所以所以B类事物可能具有性
15、质类事物可能具有性质d.A类事物具有性质类事物具有性质a,b,c,d,B类事物具有性质类事物具有性质a,b,c,(a,b,c与与a,b,c相似或相同)相似或相同)观察、比较观察、比较联想、类推联想、类推猜想新结论猜想新结论例例例例4:(4:(4:(4:(梵塔传说梵塔传说梵塔传说梵塔传说)传说在古老的印度有一座神庙,神庙中有三根传说在古老的印度有一座神庙,神庙中有三根传说在古老的印度有一座神庙,神庙中有三根传说在古老的印度有一座神庙,神庙中有三根针和套在一根针上的针和套在一根针上的针和套在一根针上的针和套在一根针上的64646464个圆环个圆环个圆环个圆环.古印度的天神指示他的僧侣们按古印度的天
16、神指示他的僧侣们按古印度的天神指示他的僧侣们按古印度的天神指示他的僧侣们按下列规则下列规则下列规则下列规则,把圆环从一根针上全部移到另一根针上,第三根针起把圆环从一根针上全部移到另一根针上,第三根针起把圆环从一根针上全部移到另一根针上,第三根针起把圆环从一根针上全部移到另一根针上,第三根针起“过渡过渡过渡过渡”的作用的作用的作用的作用.1.1.1.1.每次只能移动每次只能移动每次只能移动每次只能移动1 1 1 1个圆环;个圆环;个圆环;个圆环;2.2.2.2.较大的圆环不能放在较小的圆环上面较大的圆环不能放在较小的圆环上面较大的圆环不能放在较小的圆环上面较大的圆环不能放在较小的圆环上面.如果有
17、一天,僧侣们将这如果有一天,僧侣们将这如果有一天,僧侣们将这如果有一天,僧侣们将这64646464个圆环全部移到另一根针上,个圆环全部移到另一根针上,个圆环全部移到另一根针上,个圆环全部移到另一根针上,那么世界末日就来临了那么世界末日就来临了那么世界末日就来临了那么世界末日就来临了.请你试着推测:把请你试着推测:把请你试着推测:把请你试着推测:把 个圆环从个圆环从个圆环从个圆环从1 1 1 1号针移到号针移到号针移到号针移到3 3 3 3号针号针号针号针,最少需要移最少需要移最少需要移最少需要移动多少次动多少次动多少次动多少次?1 12 23 3 1883年法国的数学家年法国的数学家 Edou
18、ard Lucas 提出的河内塔问题提出的河内塔问题(Tower of Hanoi)。123第第第第1 1个圆环从个圆环从个圆环从个圆环从1 1到到到到3 3.设设 为把为把 个圆环从个圆环从1号针移到号针移到3号针的最少次数,则号针的最少次数,则 1时,时,1 2时,时,123第第第第1 1个圆环从个圆环从个圆环从个圆环从1 1到到到到3 3.前前前前1 1个圆环从个圆环从个圆环从个圆环从1 1到到到到2 2;第第第第2 2个圆环从个圆环从个圆环从个圆环从1 1到到到到3 3;第第第第1 1个圆环从个圆环从个圆环从个圆环从2 2到到到到3 3.设设 为把为把 个圆环从个圆环从1号针移到号针移
19、到3号针的最少次数,则号针的最少次数,则 1 1时,时,3 2时,时,3 1时,时,1 3时,时,123第第第第1 1个圆环从个圆环从个圆环从个圆环从1 1到到到到3 3.前前前前1 1个圆环从个圆环从个圆环从个圆环从1 1到到到到2 2;第第第第2 2个圆环从个圆环从个圆环从个圆环从1 1到到到到3 3;前前前前1 1个圆环从个圆环从个圆环从个圆环从2 2到到到到3 3.前前前前2 2个圆环从个圆环从个圆环从个圆环从1 1到到到到2 2;第第第第3 3个圆环从个圆环从个圆环从个圆环从1 1到到到到3 3;前前前前2 2个圆环从个圆环从个圆环从个圆环从2 2到到到到3 3.设设 为把为把 个圆
20、环从个圆环从1号针移到号针移到3号针的最少次数,则号针的最少次数,则 7猜想猜想 a an n=2 2n n-1-1 将将搬动的方法系统化可拆解为以下搬动的方法系统化可拆解为以下三个步骤:三个步骤:1.1.先将上面先将上面n-1n-1片圆环依规则移动到片圆环依规则移动到某一根针上某一根针上至少需搬动至少需搬动a an-1n-1次;次;2.2.再将最大的圆环移动到空的针上再将最大的圆环移动到空的针上 至少需搬动至少需搬动1 1次;次;3.3.最后将那最后将那n-1n-1片圆环再依规则移动到片圆环再依规则移动到最大的圆环上最大的圆环上至少需搬动至少需搬动a an-1n-1次;次;至少共须搬动至少共
21、须搬动a an n=a=an-1n-1+1+a+1+an-1n-1=2a=2an-1n-1+1+1次次设设an为把为把n个圆环从一根针移到另一根针的最少次数,则个圆环从一根针移到另一根针的最少次数,则根据以上分析,我们可得以下递推公式从这个递推公式出发,可以证明上述通项公式是正确的.从 ,我们猜想其通项公式为 例例例例5.5.数一数图中的凸多面体的面数数一数图中的凸多面体的面数数一数图中的凸多面体的面数数一数图中的凸多面体的面数F F、顶点数、顶点数、顶点数、顶点数V V和棱数和棱数和棱数和棱数E,E,然然然然后探求面数后探求面数后探求面数后探求面数F F、顶点数、顶点数、顶点数、顶点数V V
22、和棱数和棱数和棱数和棱数E E之间的关系之间的关系之间的关系之间的关系.四棱柱四棱柱四棱柱四棱柱三棱锥三棱锥三棱锥三棱锥八面体八面体八面体八面体三棱柱三棱柱三棱柱三棱柱四棱锥四棱锥四棱锥四棱锥尖顶塔尖顶塔尖顶塔尖顶塔凸多面体凸多面体凸多面体凸多面体面数(面数(面数(面数(F F F F)顶顶顶顶点数(点数(点数(点数(V V V V)棱数(棱数(棱数(棱数(E E E E)四棱柱四棱柱四棱柱四棱柱三棱三棱三棱三棱锥锥锥锥八面体八面体八面体八面体三棱柱三棱柱三棱柱三棱柱四棱四棱四棱四棱锥锥锥锥尖尖尖尖顶顶顶顶塔塔塔塔凸多面体凸多面体凸多面体凸多面体面数(面数(面数(面数(F F F F)顶顶顶顶
23、点数(点数(点数(点数(V V V V)棱数(棱数(棱数(棱数(E E E E)四棱柱四棱柱四棱柱四棱柱三棱三棱三棱三棱锥锥锥锥八面体八面体八面体八面体三棱柱三棱柱三棱柱三棱柱四棱四棱四棱四棱锥锥锥锥尖尖尖尖顶顶顶顶塔塔塔塔四棱柱四棱柱四棱柱四棱柱6 68 81212凸多面体凸多面体面数(面数(F F)顶顶点数(点数(V V)棱数(棱数(E E)四棱柱四棱柱三棱三棱锥锥八面体八面体三棱柱三棱柱四棱四棱锥锥尖尖顶顶塔塔四棱柱四棱柱6812644三棱锥三棱锥凸多面体凸多面体面数(面数(F F)顶顶点数(点数(V V)棱数(棱数(E E)四棱柱四棱柱三棱三棱锥锥八面体八面体三棱柱三棱柱四棱四棱锥锥尖
24、尖顶顶塔塔四棱柱四棱柱6812644三棱锥三棱锥1286八面体八面体凸多面体凸多面体面数(面数(F F)顶顶点数(点数(V V)棱数(棱数(E E)四棱柱四棱柱三棱三棱锥锥八面体八面体三棱柱三棱柱四棱四棱锥锥尖尖顶顶塔塔四棱柱四棱柱6812644三棱锥三棱锥1286八面体八面体695三棱柱三棱柱凸多面体凸多面体面数(面数(F F)顶顶点数(点数(V V)棱数(棱数(E E)四棱柱四棱柱三棱三棱锥锥八面体八面体三棱柱三棱柱四棱四棱锥锥尖尖顶顶塔塔四棱柱四棱柱6812644三棱锥三棱锥1286八面体八面体695三棱柱三棱柱558四棱锥四棱锥凸多面体凸多面体面数(面数(F F)顶顶点数(点数(V V
25、)棱数(棱数(E E)四棱柱四棱柱三棱三棱锥锥八面体八面体三棱柱三棱柱四棱四棱锥锥尖尖顶顶塔塔四棱柱四棱柱6812644三棱锥三棱锥1286八面体八面体695三棱柱三棱柱558四棱锥四棱锥9169尖顶塔尖顶塔6 69 95 59 95 55 58 816169 9凸多面体凸多面体凸多面体凸多面体面数(面数(面数(面数(F F F F)顶顶顶顶点数(点数(点数(点数(V V V V)棱数(棱数(棱数(棱数(E E E E)四棱柱四棱柱四棱柱四棱柱三棱三棱三棱三棱锥锥锥锥八面体八面体八面体八面体三棱柱三棱柱三棱柱三棱柱四棱四棱四棱四棱锥锥锥锥尖尖尖尖顶顶顶顶塔塔塔塔6 68 812126 64 4
26、4 412128 86 6猜想凸多面体的面数猜想凸多面体的面数猜想凸多面体的面数猜想凸多面体的面数F F、顶点数、顶点数、顶点数、顶点数V V和棱数和棱数和棱数和棱数E E之间的关系式为:之间的关系式为:之间的关系式为:之间的关系式为:FVE2欧拉公式欧拉公式 一种有趣且有很长历史的数叫费马素数,这些数是由法国数学家费马在研究数列的前五项:发现它们都是素数,于是费马就猜想:形如 的数都是素数。费马素数猜想 否定一个猜想只需举出一个反例即可!一个错误的猜想 并不是所有猜想都是正确的!并不是所有猜想都是正确的!其中的故事、其中的故事、任何形如任何形如 的数都是质数的数都是质数这就是著名的这就是著名
27、的费马猜想费马猜想观察到都是质数观察到都是质数,进而进而猜想猜想:费马费马欧拉欧拉半个世纪后半个世纪后,善于善于计算的欧拉发现计算的欧拉发现第第5 5个费马数不是个费马数不是质数质数v 宣布了费马的这个猜想不成立宣布了费马的这个猜想不成立,它不能作它不能作为一个求质数的公式为一个求质数的公式.以后以后,人们又陆续发人们又陆续发现现 不是质数不是质数.至今这样的反例共找到了至今这样的反例共找到了4646个个,却还没有找到第却还没有找到第6 6个正面的例子个正面的例子,也就是说也就是说目前只有目前只有n=0,1,2,3,4n=0,1,2,3,4这这5 5个情况下个情况下,Fn,Fn才是才是质数质数
28、.大胆猜想大胆猜想 小心求证小心求证类比推理类比推理由由由由特殊到特殊特殊到特殊特殊到特殊特殊到特殊的推理的推理的推理的推理;以旧的知识为基础以旧的知识为基础以旧的知识为基础以旧的知识为基础,推测推测推测推测新新新新的结果;的结果;的结果;的结果;结论不一定成立结论不一定成立结论不一定成立结论不一定成立.归纳推理归纳推理由部分到整体、由部分到整体、由部分到整体、由部分到整体、特殊到一般特殊到一般特殊到一般特殊到一般的推理的推理的推理的推理;以观察分析为基础以观察分析为基础以观察分析为基础以观察分析为基础,推测推测推测推测新新新新的结论的结论的结论的结论;具有具有具有具有发现发现发现发现的功能的
29、功能的功能的功能;结论不一定成立结论不一定成立结论不一定成立结论不一定成立.具有具有具有具有发现发现发现发现的功能的功能的功能的功能;小结小结归纳推理和类比推理的过程归纳推理和类比推理的过程归纳推理和类比推理的过程归纳推理和类比推理的过程从具体问从具体问题出发题出发观察、分析、观察、分析、比较、联想比较、联想归纳、归纳、类比类比提出提出猜想猜想通俗地说,合情推理是指通俗地说,合情推理是指“合乎情理合乎情理”的推理的推理.合情推理合情推理归纳推理归纳推理类比推理类比推理分析:面积法分析:面积法ABCDOO2.2.3.3.观察下面图形规律,在其右下角的空格内观察下面图形规律,在其右下角的空格内画上
30、合适的图形为(画上合适的图形为()A.B.C.D.一年夏天,鲁班上山砍树,因为坡陡路滑,而且横七竖八地长满一年夏天,鲁班上山砍树,因为坡陡路滑,而且横七竖八地长满了小树、杂草,行走非常不便。鲁班只好搀着树木、拽着茅草往上了小树、杂草,行走非常不便。鲁班只好搀着树木、拽着茅草往上爬。忽然,脚底一滑,身体便顺着山坡往下滚去,鲁班急中生智,爬。忽然,脚底一滑,身体便顺着山坡往下滚去,鲁班急中生智,急忙抓住一把茅草,由于没有抓牢,反而感到手掌心疼痛无比。滑急忙抓住一把茅草,由于没有抓牢,反而感到手掌心疼痛无比。滑到山脚,鲁班狼狈地爬了起来,伸开手掌一看,掌心已是鲜血淋漓。到山脚,鲁班狼狈地爬了起来,伸
31、开手掌一看,掌心已是鲜血淋漓。鲁班非常惊奇,为何一把茅草能够划破人的手掌。鲁班顾不得疼痛,鲁班非常惊奇,为何一把茅草能够划破人的手掌。鲁班顾不得疼痛,沿着滑下来的山坡,爬上去一看,这丛茅草与别的草没有两样。鲁沿着滑下来的山坡,爬上去一看,这丛茅草与别的草没有两样。鲁班不甘心,便揪下一根茅草仔细地观察起来。这茅草的叶子很怪,班不甘心,便揪下一根茅草仔细地观察起来。这茅草的叶子很怪,叶子两边都长着锋利的小细齿,人手握紧它一拽,手掌就会被划破。叶子两边都长着锋利的小细齿,人手握紧它一拽,手掌就会被划破。鲁班又试着用茅草在他的手指上拉了一下,果然又划开一道血口。鲁班又试着用茅草在他的手指上拉了一下,果然又划开一道血口。鲁班从这件事中得到启发,心想:如果仿照茅草细齿,来做一件鲁班从这件事中得到启发,心想:如果仿照茅草细齿,来做一件边缘带有细齿的工具,用它来锯树,岂不比斧砍更快、更好吗?鲁边缘带有细齿的工具,用它来锯树,岂不比斧砍更快、更好吗?鲁班忘记疼痛,转身下山,做起试验来。在金属工匠的帮助下,鲁班班忘记疼痛,转身下山,做起试验来。在金属工匠的帮助下,鲁班做了一把带有许多细齿的铁条。鲁班将这件工具拿去锯树,果然又做了一把带有许多细齿的铁条。鲁班将这件工具拿去锯树,果然又快又省力。锯子就这样发明了。快又省力。锯子就这样发明了。
限制150内