(精品)【恒心】2013届数学(文)第一轮第4章第30讲正、余弦定理及其应用.ppt
《(精品)【恒心】2013届数学(文)第一轮第4章第30讲正、余弦定理及其应用.ppt》由会员分享,可在线阅读,更多相关《(精品)【恒心】2013届数学(文)第一轮第4章第30讲正、余弦定理及其应用.ppt(51页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、三角形解的个数的判定三角形解的个数的判定【例1】已知两边a、b和其中一边a的对角A(A为锐角),解三角形的解的情况:absinA absinAbsinAac2,C为直角a2b2c2,C为钝角a2b2c2.5解三角形常见类型及解法 在三角形ABC的六个元素(三个角A、B、C,三条边a、b、c)中要知三个(除三个角外)才能求解,常见类型及其解法见下表:已知条件应用定理一般解法一边和两角(如:a,B,C)正弦定理由ABC,求角A;由正弦定理求出b与c.在有解时只有一解已知条件应用定理一般解法两边和夹角(如:a,b,C)正弦定理余弦定理由余弦定理求第三边c;由正弦定理求出小边所对的角;再由ABC求另一
2、角在有解时只有一解三边(如:a,b,c)余弦定理由余弦定理求出角A、B;再利用ABC求出角C;在有解时只有一解两边和其中一边的对角(如:a,b,A)正弦定理余弦定理由正弦定理求出角B;由ABC,求出角C;再利用正弦定理或余弦定理求c.可有两解、一解或无解 6.应用正、余弦定理解三角形应用题的一般步骤:(1)理解题意,分清已知与未知,画出示意图;(2)依据已知条件和求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解三角形的数学模型;(3)根据三角形已知的边角条件合理选择正、余弦定理解三角形,从而得到数学模型的解;(4)检验上述所求的解是否具有实际意义,从而最终得出实际问题的解 7解三角形应用题常见的几种情况:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解 (2)实际问题经抽象概括后,已知量与未知量涉及到两个(或两个以上)三角形,这时需作出这些三角形,先解够条件的三角形,再逐步求出其他三角形中的解有时需设出未知量,从几个三角形中列出方程,解方程得出所要求的解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 恒心 精品 2013 数学 第一轮 30 余弦 定理 及其 应用
限制150内