《一元一次不等式的应用.ppt》由会员分享,可在线阅读,更多相关《一元一次不等式的应用.ppt(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第九章 不等式与不等式组9.2 一元一次不等式第2课时 一元一次不等式的应用1.会通过列一元一次不等式去解决生活中的实际问 题,经历“实际问题抽象为不等式模型”的过程;(重点)2.体会解不等式过程中的化归思想与类比思想,体会分 类讨论思想在用不等式解决实际问题中的应用学习目标一元一次方程解实际问题的步骤:实际问题实际问题找相等关系找相等关系设未知数设未知数列出方程列出方程检验解的检验解的合理性合理性解方程解方程交流:那么一元一次不等式如何解实际问题呢?小华打算在星期天与同学去登山,计划上午7点出发,到达山顶后休息2h,下午4点以前必须回到出发点.如果他们去时的平均速度是3km/h,回来时的平均
2、速度是4km/h,他们最远能登上哪座山顶(图中数字表示出发点到山顶的路程)?一元一次不等式的应用问题中涉及的数量关系是:去时所花时间+休息时间+回来所花时间总时间.解:设从出发点到山顶的距离为x km,则他们去时所花时间为 h,回来所花时间为 h.他们在山顶休息了2 h,又上午7点到下午4点之间总共相隔9 h,即所用时间应小于或等于9 h.所以有 +2+9.解得 x12.因此要满足下午4点以前必须返回出发点,小华他们最远能登上D山顶.x 125.例1 某童装店按每套90元的价格购进40套童装,应 缴纳的税费为销售额的10%.如果要获得不低于 900元的纯利润,每套童装的售价至少是多少元?解:设
3、每套童装的售价是 x 元.则 40 x904040 x10900.解得 答:每套童装的售价至少是125元.分析:分析:本题涉及的数量关系是:本题涉及的数量关系是:销售额成本销售额成本税费税费纯利润纯利润(900(900元元).).例2 甲、乙两超市以同样价格出售同样的商品,并且给出了不同的优惠方案:在甲超市累计购物超过100元后,超出100元的部分按90%收费;在乙超市累计购物超过50元后,超出50元的部分按95%收费,顾客到哪家超市购物花费少?分析:甲乙两超市的优惠价格不一样,因此需要分类讨论:(1)当购物不超过50元;(2)当购物超过50元而不超过100元,(3)当购物超过100元.解:(
4、1)当购物不超过50元时,在甲、乙两超市都不享受优 惠,购物花费一样;(2)当购物超过50元而不超过100元时,在乙超市享受优惠,购物花费少;(3)当累计购物超过100元后,设购物为x(x100)元 若 50+0.95(x-50)100+0.9(x-100)即x150 在甲超市购物花费少;若 50+0.95(x-50)100+0.9(x-100)即x150 在乙超市购物花费少;若 50+0.95(x-50)=100+0.9(x-100)即x=150 在甲、乙两超市购物花费一样.应用一元一次不等式解决实际问题的步骤:实际问题解不等式列不等式结合实际确定答案找出不等关系 设未知数总结归纳 设需要购
5、买x块地板砖,则有 540.60.6x 解得 x 55.6 由于地板砖的数目必须是整数,所以x的最小值为56.答:小明至少要购买56块地板砖.解 1.小明家的客厅长5 m,宽4 m现在想购买边长为60 cm的正方形地板砖把地面铺满,至少需要购买多少块这样的地板砖?2.某市打市内电话的收费标准是:每次3 min以内(含3 min)0.22元,以后每分钟0.11元(不足1 min部分按1 min计)小琴一天在家里给同学打了一次市内电话,所用电话费没超过0.5元她最多打了几分钟的电话?解:设小琴打了x分钟的电话,则有 0.22+(x3)0.110.5 解得 x 5.5 由于电话计时按照分钟计时,x应是整数,所以x的最大值为5.答:小琴最多打了5min的电话.通过今天的学习通过今天的学习,能说说你的收获和体会吗能说说你的收获和体会吗?你有什么经验与收获让同学们共享呢?你有什么经验与收获让同学们共享呢?回顾与反思一元一次不等式的应用实际问题根据题意列不等式解一元一次不等式根据实际问题找出符合条件的解集或整数解得出解决问题的答案 回回顾顾
限制150内