七年级数学《52平行线的性质》课件.ppt
《七年级数学《52平行线的性质》课件.ppt》由会员分享,可在线阅读,更多相关《七年级数学《52平行线的性质》课件.ppt(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、复习回顾复习回顾新课学习新课学习巩固练习巩固练习课堂小结课堂小结 5.2平行线的性质复习回顾复习回顾新课学习新课学习巩固练习巩固练习课堂小结课堂小结ABP 课堂练习:已知直线AB 及其外一点P,画出过点P的AB 的平行线。平行线的判定方法有哪三种?它平行线的判定方法有哪三种?它们是先知道什么们是先知道什么、后知道什么?后知道什么?同位角相等同位角相等 内错角相等内错角相等 同旁内角互补同旁内角互补两直线平行两直线平行问题复习回顾复习回顾新课学习新课学习巩固练习巩固练习课堂小结课堂小结1 1、如果、如果B B1 1,根据根据_ 可得可得AD/BCAD/BC2 2、如果如果1 1D D,根据根据_
2、 可得可得AB/CDAB/CD3 3、如果如果B+B+BCDBCD180180,根据根据_ 可得可得_4 4、如果、如果2=2=4 4,根据,根据_ 可得可得_5 5、如果、如果_,根据内错角相等,两直线平行,根据内错角相等,两直线平行,可得可得AB/CDAB/CDABCD12345同位角相等,两直线平行同位角相等,两直线平行内错角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行同旁内角互补,两直线平行AB/CDAB/CD内错角相等,两直线平行内错角相等,两直线平行AD/BCAD/BC5533如果两条直线平行,那么这两条如果两条直线平行,那么这两条平行线平行线被被第三条直线所截而
3、成的同位角有什么数量关系?第三条直线所截而成的同位角有什么数量关系?平行线的性质1(公理)两条平行线平行线平行线平行线被第三条直线所截,同位角相等。简单说成:两直线平行,两直线平行,同位角相等同位角相等。问题演示演示结论结论结论结论性质性质2 2ABPCDEF21复习回顾复习回顾新课学习新课学习巩固练习巩固练习课堂小结课堂小结ABCDEF21EF345687演示演示结论结论结论结论 a/b(已知)已知)1=2(两直线平行,同位角相等两直线平行,同位角相等)又又 1=3(对顶角相等)(对顶角相等)3=2(等量代换)(等量代换)123ab思考思考思考思考回答如图,已知:a/b 那么3与2有什么关系
4、?平行线的性质2两条平行线平行线被第三条直线所截,内错角相等 简单说成:两直线平行,两直线平行,内错角相等内错角相等。结论结论结论结论复习回顾复习回顾性质性质3 3巩固练习巩固练习课堂小结课堂小结c 2 31ba解:a/b(已知)1=2(两直线平行,同位角相等)1+3=180(邻补角定义)2+3=180(等量代换)如图:已知已知a/b,那么那么 2与与 3有什么关系呢有什么关系呢?平行线的平行线的性质性质3 3 两条两条平行线平行线被第三条直线所截,同旁内角互补被第三条直线所截,同旁内角互补 简单说成:两直线平行,两直线平行,同旁内角互补同旁内角互补。复习回顾复习回顾性质性质1 1巩固练习巩固
5、练习课堂小结课堂小结平行线的性质1(公理)两条平行线平行线平行线平行线被第三条直线所截,同位角相等。简单说成:两直线平行,两直线平行,同位角相等同位角相等。平行线的性质2两条平行线平行线被第三条直线所截,内错角相等 简单说成:两直线平行,两直线平行,内错角相等内错角相等。平行线的平行线的性质性质3 3 两条两条平行线平行线被第三条直线所截,同旁内角互补被第三条直线所截,同旁内角互补 简单说成:两直线平行,两直线平行,同旁内角互补同旁内角互补。精彩回放复习回顾复习回顾新课学习新课学习巩固练习巩固练习课堂小结课堂小结两类定理的比较两类定理的比较两条平行直线被第三条直线直线所截,两条平行直线被第三条
6、直线直线所截,两条平行直线被第三条直线直线所截,两条平行直线被第三条直线直线所截,同位角相等,同位角相等,同位角相等,同位角相等,两直线平行两直线平行两直线平行两直线平行两直线平行,同位角相等。两直线平行,同位角相等。两直线平行,同位角相等。两直线平行,同位角相等。判定定理判定定理判定定理判定定理性质定理性质定理性质定理性质定理条件条件条件条件 结论结论结论结论条件条件条件条件 结论结论结论结论思考思考:1 1 1 1、判定定理与性质定理的判定定理与性质定理的判定定理与性质定理的判定定理与性质定理的 条件与结论有什么关系?条件与结论有什么关系?条件与结论有什么关系?条件与结论有什么关系?互换。
7、互换。互换。互换。内错角相等,内错角相等,内错角相等,内错角相等,两直线平行两直线平行两直线平行两直线平行两直线平行,内错角相等。两直线平行,内错角相等。两直线平行,内错角相等。两直线平行,内错角相等。同旁内角互补,两直线平行同旁内角互补,两直线平行同旁内角互补,两直线平行同旁内角互补,两直线平行两直线平行,同旁内角互补两直线平行,同旁内角互补两直线平行,同旁内角互补两直线平行,同旁内角互补2 2 2 2、使用判定定理时使用判定定理时使用判定定理时使用判定定理时是是是是 已知已知已知已知 ,说明,说明,说明,说明 ;角的相等或互补角的相等或互补角的相等或互补角的相等或互补二直线平行二直线平行二
8、直线平行二直线平行 使用性质定理时使用性质定理时使用性质定理时使用性质定理时是是是是 已知已知已知已知 ,说明,说明,说明,说明 。二直线平行二直线平行二直线平行二直线平行角的相等或互补角的相等或互补角的相等或互补角的相等或互补平行线的“判定判定”与“性质性质”有什么不同比一比 已知角之间的关系已知角之间的关系(相等或互补相等或互补),得到,得到两直线平行两直线平行的结论是平行线的的结论是平行线的判定判定。已知两直线平行,得到已知两直线平行,得到角之间的关系角之间的关系(相等或互补相等或互补)的结论是平行线的的结论是平行线的性质性质。复习回顾复习回顾新课学习新课学习巩固练习巩固练习课堂小结课堂
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 52平行线的性质 七年 级数 52 平行线 性质 课件
限制150内