123_角平分线的性质2013924.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《123_角平分线的性质2013924.ppt》由会员分享,可在线阅读,更多相关《123_角平分线的性质2013924.ppt(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、12.3角平分线的性质角平分线的性质复习提问复习提问1 1、角平分线的概念、角平分线的概念一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。oBCA12复习提问复习提问 2 2、点到直线距离、点到直线距离:从直线外一点从直线外一点到这条直线的垂线段到这条直线的垂线段的的长度长度,叫做叫做点到直线的距离。点到直线的距离。OPAB线段的线段的长度长度 不利用工具,请你将一张用纸不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什片做的角分成两个相等的角。你有什么办法?么办法?AOBC活活 动动1(对折对折)1、如图,是一个角平分仪,、如图,是一个角平分仪,其中其中AB=AD,BC
2、=DC。将点将点A放在角的顶点放在角的顶点,AB和和AD沿着角的两边放下沿着角的两边放下,沿沿AC画一画一条射线条射线AE,AE就是角平分线,就是角平分线,你能说明它的道理吗你能说明它的道理吗?活活 动动2ADBCE 如果前面活动中的纸片换成木板、如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?钢板等没法折的角,又该怎么办呢?证明:在ACD和和ACB中中 AD=AB(已知)(已知)DC=BC(已知)(已知)CA=CA(公共边)(公共边)ACD ACB(SSS)CAD=CAB(全等三角形的(全等三角形的 对应边相等)对应边相等)AC平分平分DAB(角平分线的定义)(角平分线的定义)
3、ADBCE 根据角平分仪的制作原理怎样作根据角平分仪的制作原理怎样作一个角的平分线?(不用角平分仪或一个角的平分线?(不用角平分仪或量角器)量角器)活活 动动3NOMCEAOBCDE尺规作图:尺规作图:作法:作法:1 1、以、以_ _ _为圆心,为圆心,_长为半径作圆弧,长为半径作圆弧,与角的两边分别交于与角的两边分别交于C C、D D两点;两点;2 2、分别以分别以_为圆心,为圆心,_的长为半径的长为半径作弧,两条圆弧交于作弧,两条圆弧交于AOBAOB内一点内一点_;3 3、作射线、作射线_;_就是所求作的射线。就是所求作的射线。点点O O任意任意C、D超过超过CDCD一半一半EOEOE观观
4、察察察察领领悟作法,探索思考悟作法,探索思考悟作法,探索思考悟作法,探索思考证证明方法:明方法:明方法:明方法:A A为什么为什么OCOC是角平分线呢?是角平分线呢?想一想:想一想:已知:已知:OM=ONOM=ON,MC=NCMC=NC。求证:求证:OCOC平分平分AOBAOB。证明证明:在:在OMCOMC和和ONCONC中,中,OM=ONOM=ON,MC=NCMC=NC,OC=OCOC=OC,OMC ONCOMC ONC(SSSSSS)MOC=NOCMOC=NOC 即:即:OCOC平分平分AOBAOBABOAOEBCPD 将将 AOBAOB对折对折,再折出一个直角三角形再折出一个直角三角形(
5、使第一条折痕为斜边使第一条折痕为斜边),),然后展开然后展开,观察两次折叠形成的三条折痕观察两次折叠形成的三条折痕,你能得出什么结论你能得出什么结论?可以看一看可以看一看,第一条折痕是第一条折痕是AOBAOB的平分线的平分线OC,OC,第二次折叠第二次折叠形成的两条折痕形成的两条折痕PD,PEPD,PE是角的平分线上一点到是角的平分线上一点到AOBAOB两边的距两边的距离离,这两个距离相等这两个距离相等.折一折折一折角平分线的性质角平分线的性质角平分线的性质:角平分线的性质:角的平分线上的点角的平分线上的点 到角的两边的距离相等到角的两边的距离相等题设:一个点在一个角的平分线上题设:一个点在一
6、个角的平分线上结论:它到角的两边的距离相等结论:它到角的两边的距离相等已知:已知:OC是是AOB的平分线,点的平分线,点P在在OC上,上,PD OA,PE OB,垂足分别是,垂足分别是D、E.求证:求证:PD=PE.AOBPED结论:结论:C已知:已知:AOC=BOC,点,点P在在OC上,上,PD OA于于D,PE OB于于E求证求证:PD=PEAOBEDP PC PDOAPDOA,PEOBPEOB证明:证明:PDO=PEO=90在在PODPOD和和PEOPEO中中 PDOPEO(AAS)PDOPEO AOCBOC OP=OP PDPE证明几何命题的一般步骤:1、明确命题的已知和求证2、根据题
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 123 平分线 性质 2013924
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内