(课件3)223实际问题与一元二次方程.ppt
《(课件3)223实际问题与一元二次方程.ppt》由会员分享,可在线阅读,更多相关《(课件3)223实际问题与一元二次方程.ppt(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、复习:复习:列方程解应用题有哪些步骤列方程解应用题有哪些步骤 对于这些步骤,应通过解各种类型的问题,才能深对于这些步骤,应通过解各种类型的问题,才能深刻体会与真正掌握列方程解应用题。刻体会与真正掌握列方程解应用题。上一节,我们学习了解决上一节,我们学习了解决“平均平均增长增长(下降下降)率问率问题题”,现在,我们要学习解决,现在,我们要学习解决“面积、体积问题面积、体积问题。实际问题与一元二次方程实际问题与一元二次方程面积、体积问题面积、体积问题一、复习引入一、复习引入 1直角三角形的面积公式是什么?直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?一般三角形的面积公式是什么呢?2正方
2、形的面积公式是什么呢?正方形的面积公式是什么呢?长方形的面积公式又是什么?长方形的面积公式又是什么?3梯形的面积公式是什么?梯形的面积公式是什么?4菱形的面积公式是什么?菱形的面积公式是什么?5平行四边形的面积公式是什么?平行四边形的面积公式是什么?6圆的面积公式是什么?圆的面积公式是什么?要设计一本书的封面要设计一本书的封面,封面长封面长27,宽宽21,正中正中央是一个与整个封面长宽比例相同的矩形央是一个与整个封面长宽比例相同的矩形,如果如果要使四周的边衬所占面积是封面面积的四分之要使四周的边衬所占面积是封面面积的四分之一一,上、下边衬等宽上、下边衬等宽,左、右边衬等宽左、右边衬等宽,应如何
3、设应如何设计四周边衬的宽度计四周边衬的宽度?2721分析分析:这本书的长宽之比是这本书的长宽之比是9:7,依题知正中依题知正中央的矩形两边之比也为央的矩形两边之比也为9:7解法一解法一:设正中央的矩形两边分别为设正中央的矩形两边分别为9xcm,7xcm依题意得依题意得解得解得 故上下边衬的宽度为故上下边衬的宽度为:左右边衬的宽度为左右边衬的宽度为:要设计一本书的封面要设计一本书的封面,封面长封面长27,宽宽21,正中央是一正中央是一个与整个封面长宽比例相同的矩形个与整个封面长宽比例相同的矩形,如果要使四周的边衬如果要使四周的边衬所占面积是封面面积的四分之一所占面积是封面面积的四分之一,上、下边
4、衬等宽上、下边衬等宽,左、左、右边衬等宽右边衬等宽,应如何设计四周边衬的宽度应如何设计四周边衬的宽度?2721分析分析:这本书的长宽之比是这本书的长宽之比是9:7,正中央的正中央的矩形两边之比也为矩形两边之比也为9:7,由此判断上下边由此判断上下边衬与左右边衬的宽度之比也为衬与左右边衬的宽度之比也为9:7解法二解法二:设上下边衬的宽为设上下边衬的宽为9xcm,左右边衬宽为,左右边衬宽为7xcm依题意得依题意得解方程得解方程得(以下同学们自己完成以下同学们自己完成)方程的哪个根合方程的哪个根合乎实际意义乎实际意义?为什么为什么?例例1.(2004年年,镇江镇江)学校为了美化校园环境,在一块长学校
5、为了美化校园环境,在一块长40米、宽米、宽20米的长方形空地上计划新建一块长米的长方形空地上计划新建一块长9米、宽米、宽7米的长方形花圃米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适平方米,请你给出你认为合适的三种不同的方案的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;
6、平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由如果不能,请说明理由.解解:(1)方案方案1:长为:长为 米,宽为米,宽为7米米;方案方案2:长为:长为16米,宽为米,宽为4米米;方案方案3:长:长=宽宽=8米米;注:本题方案有无数种注:本题方案有无数种(2)在长方形花圃周长不变的情况下,长方形花)在长方形花圃周长不变的情况下,长方形花圃面积不能增加圃面积不能增加2平方米平方米.由题意得长方形长与宽的和为由题意得长方形长与宽的和为16米米.设长方形花圃设长方形花圃的长为的长为x米,则宽为(米,则宽为(16-x)米)米.x(16-x)=63+2,x2-16x+65=0,此方程无解此
7、方程无解.在周长不变的情况下,长方形花圃的面积不能增在周长不变的情况下,长方形花圃的面积不能增加加2平方米平方米1 1、用、用20cm20cm长的铁丝能否折成面积为长的铁丝能否折成面积为30cm30cm2 2的矩形的矩形,若能够若能够,求它的长与宽求它的长与宽;若不能若不能,请说明请说明理由理由.解解:设这个矩形的长为设这个矩形的长为xcm,则宽为则宽为 cm,即即x2-10 x+30=0这里这里a=1,b=10,c=30,此方程无解此方程无解.用用20cm长的铁丝不能折成面积为长的铁丝不能折成面积为30cm2的矩形的矩形.例例2 2:某校为了美化校园某校为了美化校园,准备在一块长准备在一块长
8、32米米,宽宽20米的长方形场地上修筑若干条道路米的长方形场地上修筑若干条道路,余余下部分作草坪下部分作草坪,并请全校同学参与设计并请全校同学参与设计,现在现在有两位学生各设计了一种方案有两位学生各设计了一种方案(如图如图),根据根据两种设计方案各列出方程两种设计方案各列出方程,求图中道路的宽求图中道路的宽分别是多少分别是多少?使图使图(1),(2)的草坪的草坪面积面积为为540540米米2 2.(1)(2)(1)解解:(1):(1)如图,设道路的宽为如图,设道路的宽为x米,则米,则化简得,化简得,其中的其中的 x=25超出了原矩形的宽,应舍去超出了原矩形的宽,应舍去.图图(1)中中道路的宽为
9、道路的宽为1米米.则横向的路面面积为则横向的路面面积为 ,分析:此题的相等关系分析:此题的相等关系是矩形面积减去道路面是矩形面积减去道路面积等于积等于540540米米2 2。解法一、解法一、如如图,设道路的宽为图,设道路的宽为x x米,米,32x 32x 米米2 2纵向的路面面积为纵向的路面面积为 。20 x 20 x 米米2 2注意:这两个面积的重叠部分是注意:这两个面积的重叠部分是 x x2 2 米米2 2所列的方程是不是所列的方程是不是?图中的道路面积不是图中的道路面积不是米米2 2。(2)而是从其中减去重叠部分,即应是而是从其中减去重叠部分,即应是米米2所以正确的方程是:所以正确的方程
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 课件 223 实际问题 一元 二次方程
限制150内