1.1.1 函数的平均变化率.ppt
《1.1.1 函数的平均变化率.ppt》由会员分享,可在线阅读,更多相关《1.1.1 函数的平均变化率.ppt(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.1.1 函数的平均变化率辽宁省建昌县高级中学李乔滋情景引入情景引入CADEHBOyxx0 x1 x2 xk xk+1 概念形成平均变化率:一般地,已知函数y=f(x),x0,x1是其定义域内的不同的两点,记x=x1-x0,y=y1-y0=f(x1)-f(x0)=f(x0+x)-f(x0)则当x0时,商 称作函数y=f(x)在区间x0,x0+x(或x0+x,x0)的平均变化率1.对函数平均变化率的理解(1)函数在x0处有定义;(2)x1是x0附近的任意点,x0,可正可负(3)改变量相对应(4)平均变化率可正,可负,可零(5)函数平均变化率的几何意义:函数图象上两点连线的斜率2.求函数平均变化
2、率的步骤求函数y=f(x)在x0附近的平均变化率(1)确定自变量改变量x(2)求函数改变量y(3)求平均变化率应用举例例1 求函数 在区间 (或 )的平均变化率.归纳:1.平均变化率与x0 与 有关;2.平均变化率的绝对值越大,曲线越陡;反之,平缓例2 求函数 在 附近的平均变化率探索与研究例2中所得函数的平均变化率表达式的值与函数图象之间的关系平均变化率的绝对值越大,曲线越陡。平均变化率的绝对值越小,曲线平缓。课堂练习1.设函数yf(x),当自变量x由x0改变为x0 x时,函数值的改变量y为()Af(x0 x)Bf(x0)x Cf(x0)x Df(x0 x)f(x0)答案D2已知s(t)=2t2,求s(t)在区间4,4+t的平均变化率.3.指出函数 y=sinx 在区间 和 的平均变化率哪个大?归纳总结1.平均变化率定义2.平均变化率的几何意义3.平均变化率的求法作业P5 A2 B2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.1.1 函数的平均变化率 1.1 函数 平均 变化
限制150内