22.3实际问题与二次函数(1).ppt
《22.3实际问题与二次函数(1).ppt》由会员分享,可在线阅读,更多相关《22.3实际问题与二次函数(1).ppt(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、授课类型:一课三磨授课学校:联合初中授课班级:9(2)班授课时间:2016年10月18日1.二次函数y=2(x-3)2+5的对称轴是 ,顶点坐标是 .当x=时,y的最 值是 .2.二次函数y=-3(x+4)2-1的对称轴是 ,顶点坐标是 .当x=时,函数有最_ 值,是 .3.二次函数y=2x2-8x+9的对称轴是 ,顶点坐标是 .当x=时,函数有最_ 值,是 .x=3(3,5)3小5x=-4(-4,-1)-4大-1x=2(2,1)2大1从地面竖直向上抛出一小球,小球的高度从地面竖直向上抛出一小球,小球的高度 h(单位:单位:m)与小球的运动时间与小球的运动时间 t(单位:单位:s)之间的关系式
2、是之间的关系式是h=30t-5t 2(0t6)小球的运动时间是多少时,小小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?球最高?小球运动中的最大高度是多少?1创设情境,引出问题创设情境,引出问题小球运小球运动动的的时间时间是是 3 s 时时,小球最高,小球最高小球运小球运动动中的最大高度是中的最大高度是 45 m2结合问题,拓展一般结合问题,拓展一般由于抛物线由于抛物线 y=ax 2+bx+c 的顶点是最低(高)点,的顶点是最低(高)点,当当 时,二次函数时,二次函数 y=ax 2+bx+c 有最小(大)有最小(大)值值如何求如何求:二次函数二次函数 y=ax 2+bx+c 的最
3、小(大)的最小(大)值值?(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值.解决这类题目的一般步骤解决这类题目的一般步骤3归纳探究,总结方法归纳探究,总结方法问题:用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地的面积S最大?分析:先写出S与l的函数关系式,再求出使S最大的l的值.矩形场地的周长是60m,一边长为l,则另一边长为 m,场地的面积:(0l30)S=l(30-l)即S=-l2+30l请同学们画出此函数的图象4类比引入类比引入,探究问题,探究
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 22.3 实际问题 二次 函数
限制150内