级数课件1.ppt
《级数课件1.ppt》由会员分享,可在线阅读,更多相关《级数课件1.ppt(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、无穷级数 无穷级数无穷级数无穷级数是研究函数的工具无穷级数是研究函数的工具表示函数表示函数研究性质研究性质数值计算数值计算数项级数数项级数幂级数幂级数付氏级数付氏级数第十二章常数项级数的概念和性质 一、常数项级数的概念一、常数项级数的概念 二、无穷级数的基本性质二、无穷级数的基本性质 三、级数收敛的必要条件三、级数收敛的必要条件*四、柯西审敛原理四、柯西审敛原理 机动 目录 上页 下页 返回 结束 第一节 第十二章 一、常数项级数的概念一、常数项级数的概念 引例引例1.用圆内接正多边形面积逼近圆面积.依次作圆内接正边形,这个和逼近于圆的面积 A.设 a0 表示即内接正三角形面积,ak 表示边数
2、增加时增加的面积,则圆内接正机动 目录 上页 下页 返回 结束 定义定义:给定一个数列将各项依即称上式为无穷级数,其中第 n 项叫做级数的一般项,级数的前 n 项和称为级数的部分和.次相加,简记为收敛收敛,则称无穷级数并称 S 为级数的和和,记作机动 目录 上页 下页 返回 结束 当级数收敛时,称差值为级数的余项余项.则称无穷级数发散发散.显然机动 目录 上页 下页 返回 结束 例例1.讨论等比级数(又称几何级数)(q 称为公比)的敛散性.解解:1)若从而因此级数收敛,从而则部分和因此级数发散.其和为机动 目录 上页 下页 返回 结束 2).若因此级数发散;因此n 为奇数n 为偶数从而综合 1
3、)、2)可知,时,等比级数收敛;时,等比级数发散.则级数成为不存在,因此级数发散.机动 目录 上页 下页 返回 结束 例例2.判别下列级数的敛散性:解解:(1)所以级数(1)发散;技巧技巧:利用“拆项相消拆项相消”求和机动 目录 上页 下页 返回 结束(2)所以级数(2)收敛,其和为 1.技巧技巧:利用“拆项相消拆项相消”求和机动 目录 上页 下页 返回 结束 例例3.判别级数的敛散性.解解:故原级数收敛,其和为机动 目录 上页 下页 返回 结束 例例4 调和级数解:解:假设调和级数收敛于 S,则应有但矛盾!所以假设不真.机动 目录 上页 下页 返回 结束 成立二、无穷级数的基本性质二、无穷级
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 级数 课件
限制150内