教育专题:切线长定理(用).ppt
《教育专题:切线长定理(用).ppt》由会员分享,可在线阅读,更多相关《教育专题:切线长定理(用).ppt(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、切线长定理切线长定理如图,纸上有一如图,纸上有一 O,PA为为 O的一条的一条切线,沿着直线切线,沿着直线PO对折,设圆上与点对折,设圆上与点A重合的点为重合的点为B。1.OB是是 O的一条半径吗?的一条半径吗?2.PB是是 O的切线吗?的切线吗?3.PA、PB有何关系?有何关系?4.APO和和BPO有何关系?有何关系?数学探究数学探究PAOB问题:问题:经过圆外一点作圆的切线,这点和切点之间的线经过圆外一点作圆的切线,这点和切点之间的线段的长叫做段的长叫做切线长。切线长。数学探究数学探究OBPA切线长和切线的区别和联系切线长和切线的区别和联系:切线是直线,不可以度量;切线长是指切线上切线是直
2、线,不可以度量;切线长是指切线上的一条线段的长,可以度量。的一条线段的长,可以度量。已知:已知:求证:求证:如图,如图,P P为为 O O外一点,外一点,PAPA、PBPB为为 O O的切线,的切线,A A、B B为切点,连结为切点,连结POPO切线长定理切线长定理 从从圆外一点可以引圆外一点可以引圆的两条切线,圆的两条切线,它们的切线长相它们的切线长相等,这一点和圆等,这一点和圆心的连线平分两心的连线平分两条切线的夹角。条切线的夹角。OBPA一、判断一、判断(1 1)过任意一点总可以作圆的两条切线()过任意一点总可以作圆的两条切线()(2 2)从圆外一点引圆的两条切线,它们的长相等。)从圆外
3、一点引圆的两条切线,它们的长相等。练习练习(1)(1)如图如图PAPA、PBPB切圆于切圆于A A、B B两点,两点,连结连结POPO,则,则 度。度。PBOA二、填空二、填空25(3)如图,)如图,PA、PB、DE分别切分别切 O于于A、B、C,DE分别交分别交PA,PB于于D、E,已知已知P到到 O的切线的切线长为长为8CM,则,则 PDE的周长为(的周长为()AA 16cmD 8cmC 12cmB 14cmDCBEAP例例2、如图,过半径为、如图,过半径为6cm的的 O外一点外一点P作圆作圆的切线的切线PA、PB,连结,连结PO交交 O于于F,过,过F作作 O切线分别交切线分别交PA、P
4、B于于D、E,如果,如果PO10cm,求求PED的周长。的周长。FOEDPBA数学探究数学探究OBPA思考:思考:连结连结AB,则,则AB与与PO有怎样的位置关系?有怎样的位置关系?为什么?为什么?你还能得出什么结论?你还能得出什么结论?E E已知:如图已知:如图PAPA、PBPB是是 O O的两的两条切线,条切线,A A、B B为切点。直线为切点。直线OPOP交交 O O于于D D、E E,交,交ABAB于于C C。OPABCDE(1 1)图中互相垂直的关系)图中互相垂直的关系 有有 对,分别是对,分别是(2 2)图中的直角三角形有)图中的直角三角形有 个,分别是个,分别是等腰三角形有等腰三
5、角形有 个,分别是个,分别是(3 3)图中全等三角形)图中全等三角形 对,分别是对,分别是(4 4)如果半径为)如果半径为3cm3cm,PO=6cmPO=6cm,则点则点P P到到 O O的切线长的切线长为为 cmcm,两切线的夹角等于两切线的夹角等于 度度362360OPABCDE(5 5)如果)如果PA=4cmPA=4cm,PD=2cmPD=2cm,试求半径试求半径OAOA的长。的长。x即:解得:x=3cm半径OA的长为3cm例例1、如图,、如图,PA、PB是是 O的切线,的切线,A、B为切为切点,点,OAB30(1)求)求APB的度数;的度数;(2)当)当OA3时,求时,求AP的长的长
6、PBAO随堂训练随堂训练(2)观察观察OP与与BC的位置关系,并给予证明。的位置关系,并给予证明。(1)若若OA=3cm,APB=60,则则PA=_.PABCOM如图,如图,AC为为 O的直径,的直径,PA、PB分别切分别切 O于点于点A、B,OP交交 O于点于点M,连结,连结BC。试一试:已知:如图,试一试:已知:如图,P为为 O外一点,外一点,PA,PB为为 O的切线,的切线,A和和B是切点,是切点,BC是直径。是直径。C50,求求APB的度数的度数求证:求证:ACOP。ABOCPAOBC试一试:试一试:如图如图1,一个圆球放置在,一个圆球放置在V形架中。图形架中。图2是它的平面示意图,是
7、它的平面示意图,CA和和CB都是都是 O的切线,的切线,切点分别是切点分别是A、B。如果。如果 O的半径为的半径为 cm,且且AB=6cm,求,求ACB。思考:当切点思考:当切点F在弧在弧AB上运动时,问上运动时,问PED的周长、的周长、DOE的度数是否发生变化,请说的度数是否发生变化,请说明理由。明理由。FOEDPBA(2)如图,如图,ABC的内切圆分别和的内切圆分别和BC,AC,AB切于切于D,E,F;如果如果AF=2cm,BD=7cm,CE=4cm,则则BC=cm,AC=AB=116cm9cmBDACFE274例例3、已知四边形已知四边形ABCD的边的边AB、BC、CD、DA分别与分别与
8、 O相切于相切于P、Q、M、N,求证:求证:AB+CD=AD+BC。DABCOMNPQ思考思考 如图如图如图如图,一张三角形的铁皮一张三角形的铁皮一张三角形的铁皮一张三角形的铁皮,如何在它上面截下如何在它上面截下如何在它上面截下如何在它上面截下一块圆形的用料一块圆形的用料一块圆形的用料一块圆形的用料,并且使圆的面积尽可能大呢并且使圆的面积尽可能大呢并且使圆的面积尽可能大呢并且使圆的面积尽可能大呢?ID三角形的内切圆:三角形的内切圆:与三角形各边都相切的圆叫做三角形的与三角形各边都相切的圆叫做三角形的内切圆内切圆三角形的内心:三角形的内心:三角形的内切圆的圆心叫三角形的内切圆的圆心叫做三角形的做
9、三角形的内心内心三角形的三角形的内心内心是三角形三是三角形三条条角平分线角平分线的交点,它到的交点,它到三角形三角形三边三边的距离相等。的距离相等。数学探究数学探究DEFABDLMNPO结论:圆的外切四边形的两组对边和相等。结论:圆的外切四边形的两组对边和相等。已知:四边形已知:四边形ABCDABCD的边的边 ABAB,BCBC,CDCD,DADA和圆和圆O O分别相切于分别相切于L L,M M,N N,P P。探索圆外切四边形边。探索圆外切四边形边的关系。的关系。C(1 1)找出图中所有相等的线段)找出图中所有相等的线段(2)填空:)填空:AB+CD AD+BC(,=)=DN=DP,AP=A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教育 专题 切线 定理
限制150内