教育精品:1312第1课时线段垂直平分线的性质和判定.ppt
《教育精品:1312第1课时线段垂直平分线的性质和判定.ppt》由会员分享,可在线阅读,更多相关《教育精品:1312第1课时线段垂直平分线的性质和判定.ppt(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、13.1.2 线段的垂直平分线的性质第十三章 轴对称导入新课讲授新课当堂练习课堂小结第1课时 线段的垂直平分线的性质和判定 八年级数学上(RJ)学习目标1.理解并掌握线段的垂直平分线的性质和判定方法(重点)2.会用尺规过一点作已知直线的垂线.3.能够运用线段的垂直平分线的性质和判定解决实际问题(难点)导入新课导入新课问题引入某区政府为了方便居民的生活,计划在三个住宅小区A、B、C之间修建一个购物中心,试问该购物中心应建于何处,才能使得它到三个小区的距离相等?ABC讲授新课讲授新课线段垂直平分线的性质一如图,直线l垂直平分线段AB,P1,P2,P3,是l 上的点,请你量一量线段P1A,P1B,P
2、2A,P2B,P3A,P3B的长,你能发现什么?请猜想点P1,P2,P3,到点A 与点B 的距离之间的数量关系ABlP1P2P3探究发现P1A _P1BP2A _ P2BP3A _ P3B猜想:点P1,P2,P3,到点A 与点B 的距离分别相等 命题:线段垂直平分线上的点和这条线段两个端点的距离相等.由此你能得到什么结论?你能验证这一结论吗?已知:如图,直线lAB,垂足为C,AC=CB,点P 在l 上求证:PA=PB证明:lAB,PCA=PCB又 AC=CB,PC=PC,PCA PCB(SAS)PA=PBPABlC验证结论例1 如图,在ABC中,ABAC20cm,DE垂直平分AB,垂足为E,交
3、AC于D,若DBC的周长为35cm,则BC的长为()A5cmB10cmC15cmD17.5cm典例精析C解析:DBC的周长为BCBDCD35cm,又DE垂直平分AB,ADBD,故BCADCD35cm.ACADDC20cm,BC352015(cm).故选C.方法归纳:利用线段垂直平分线的性质,实现线段之间的相互转化,从而求出未知线段的长练一练:1.如图所示,直线CD是线段AB的垂直平分线,点P为直线CD上的一点,且PA=5,则线段PB的长为()A.6 B.5 C.4 D.32.如图所示,在ABC中,BC=8cm,边AB的垂直平分线交AB于点D,交边AC于点E,BCE的周长等于18cm,则AC的长
4、是 .B10cmPABCD图图ABCDE图图例2 尺规作图:经过已知直线外一点作这条直线的垂线.ABCDEK已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使点K和和点C在AB的两旁.(2)以点C 为圆心,CK长为半径作弧,交AB于点D和点E.(4)作直线CF.直线CF就是所求作的垂线.(3)分别以点D和点E为圆心,大于 DE的长为半径作弧,两弧相交于点F.F(1)为什么任意取一点K,使点K与点C 在直线两旁?(2)为什么要以大于 的长为半径作弧?(3)为什么直线CF 就是所求作的垂线?想一想:例3 已知:如图,在ABC中,边AB,BC的垂直平分线交于P
5、.求证:PA=PB=PC.BACMNMNPPA=PB=PCPB=PC点P在线段BC的垂直平分线上PA=PB点P在线段AB的垂直平分线上解析:证明:点P在线段AB的垂直平分线MN上,PA=PB.同理 PB=PC.PA=PB=PC.结论:三角形三边垂直平分线交于一点,这一点到三角形三个顶点的距离相等.现在你能想到方法确定购物中心的位置,使得它到三个小区的距离相等吗?例4 如图,在四边形ABCD中,ADBC,E为CD的中点,连接AE、BE,BEAE,延长AE交BC的延长线于点F.求证:(1)FCAD;(2)ABBCAD.解析:(1)根据ADBC可知ADCECF,再根据E是CD的中点可得出ADEFCE
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教育 精品 1312 课时 线段 垂直平分线 性质 判定
限制150内