概率论基础知识.ppt
《概率论基础知识.ppt》由会员分享,可在线阅读,更多相关《概率论基础知识.ppt(189页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、概率论和数理统计概率论和数理统计概率论和数理统计概率论和数理统计自考的人共同加油自考的人共同加油自考的人共同加油自考的人共同加油主要内容主要内容第一章:随机事件与概率第一章:随机事件与概率第二章第二章:随机变量及其概率分布随机变量及其概率分布第三章第三章:多维随机变量及其概率分布多维随机变量及其概率分布第四章第四章:随机变量的数字特征随机变量的数字特征 第五章第五章:大数定律及中心极限定理大数定律及中心极限定理第六章:统计量及其抽样分布第六章:统计量及其抽样分布第七章:参数估计第七章:参数估计第八章:假设检验第八章:假设检验第九章:回归分析第九章:回归分析第一章第一章 随机事件与概率随机事件与
2、概率1.1 随机事件随机事件1.2概率概率1.3条件概率条件概率1.4事件的独立性事件的独立性自测题一自测题一返回返回1.1 随机事件随机事件一、随机现象一、随机现象二、随机试验和随机事件二、随机试验和随机事件三、样本空间三、样本空间四、事件的关系与运算四、事件的关系与运算例子(事件的关系和运算)例子(事件的关系和运算)练习题练习题一、随机现象一、随机现象1.确定性现象确定性现象:例如,向上抛一颗石子必然下落;例如,向上抛一颗石子必然下落;同性电荷必定相互排斥;在一个大气压下同性电荷必定相互排斥;在一个大气压下60度度的水必定不会沸腾,等的水必定不会沸腾,等 等。等。2.随机现象随机现象:例如
3、,抛一枚硬币结果可能是正面例如,抛一枚硬币结果可能是正面朝上、也可能是反面朝上;用同一门炮向同一目朝上、也可能是反面朝上;用同一门炮向同一目标射击的弹着点不尽相同,等等。这类现象有一标射击的弹着点不尽相同,等等。这类现象有一个共同特点:即在个别试验中其结果呈现出不确个共同特点:即在个别试验中其结果呈现出不确定性定性,而在大量重复试验中其结果又具有某种规而在大量重复试验中其结果又具有某种规律性律性统计规律性统计规律性.3.概率论与数理统计具有广泛的应用。概率论与数理统计具有广泛的应用。返回返回二、随机试验和随机事件二、随机试验和随机事件 随机试验随机试验(三个特征三个特征):(1)可以在相同的条
4、件下重复地进行可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确每次试验的可能结果不止一个,并且能事先明确所有可能的结果所有可能的结果;(3)进行一次试验之前不能确定会出现哪个结果。进行一次试验之前不能确定会出现哪个结果。随机试验的每个可能发生的结果称为随机事件随机试验的每个可能发生的结果称为随机事件.简称为简称为事件事件.事件通常用英文字母事件通常用英文字母A,B,C或或A1,A2表表示,记成如下形式:示,记成如下形式:A=可能发生的结果可能发生的结果.例子例子随机事件例子随机事件例子例例1:已知一批产品共:已知一批产品共30件,内含正品件,内含正品26件,次品件
5、,次品4件,件,从中一次取出从中一次取出5件的试验件的试验.则则Ai=恰有恰有i件次品件次品,(i=0,1,2,3,4);B=最多有三件次品最多有三件次品;C=正品不超过正品不超过2件件等都是随机事件,他们在一次试验中可能发生也可能不发生等都是随机事件,他们在一次试验中可能发生也可能不发生.例例2:掷一粒骰子,观察它出现的点数。可:掷一粒骰子,观察它出现的点数。可能的结果为:能的结果为:A=1,2,3,4,5,6。返回返回三、样本空间三、样本空间 一般地,在随机试验中,把不可分割的事件称为一般地,在随机试验中,把不可分割的事件称为基本事件;由两个及两个以上基本事件组合而成的基本事件;由两个及两
6、个以上基本事件组合而成的事件称为复合事件事件称为复合事件.对于随机试验的每一个基本事件,我们可以用对于随机试验的每一个基本事件,我们可以用只含一个元素的单元素只含一个元素的单元素 表示,其中表示,其中 与与 表表示的基本事件一一对应示的基本事件一一对应.和所有基本事件相对应的元素和所有基本事件相对应的元素的全体组成的集合称为该随机试验的样本空间,通常记的全体组成的集合称为该随机试验的样本空间,通常记作作,样本空间中的元素称为样本点,样本空间中的元素称为样本点.返回返回四、四、事件的关系与运算事件的关系与运算1.包含关系和相等关系包含关系和相等关系:若事件若事件A发生必然导致事件发生必然导致事件
7、B发生发生,则称事则称事件件B包含事件包含事件A,记作记作A B。若若A B且且A B,即即A=B,则称则称A与与B相等相等BA2事件的并事件的并由属于由属于A或者属于或者属于B的所有样本点组成的集合,的所有样本点组成的集合,称为称为A与与B的并(或者和),记作的并(或者和),记作 或者或者A+B.显然事件表示显然事件表示“事件事件A与与B事件至少有事件至少有一个发生一个发生”这一事件这一事件.AB3事件的交事件的交由属于同时由属于同时A又属于又属于B的所有样本点组成的的所有样本点组成的集合,称为集合,称为A与与B的交(或者积),记作的交(或者积),记作 或者或者 .显然事件显然事件 表示表示
8、“事件事件A与事件与事件B同时发生同时发生”这一事件这一事件.AB4事件的差事件的差由属于由属于A但不属于但不属于B的所有样本点组成的所有样本点组成的集合,称为的集合,称为A与与B的差,记作的差,记作 .事事件件 表示表示“事件事件A发生而事件发生而事件B不发不发生生”这一事件这一事件.AB5对立事件对立事件样本空间样本空间 与与A的差的差 称为事件称为事件A的的对立事件(或者逆事件),记作对立事件(或者逆事件),记作 ,事,事件件 表示表示“事件事件A不发生不发生”.对立事件对立事件A和和 间的关系可以表示为:间的关系可以表示为:.A6互不相容事件互不相容事件如果在同一试验中,事件如果在同一
9、试验中,事件A与事件与事件B不可能不可能同时发生,则称事件同时发生,则称事件A与事件与事件B互不相容互不相容.记记作作 .基本事件是互不相容的基本事件是互不相容的.AB补充点补充点补充点补充点事件的并、交和互不相容事件可推广到事件的并、交和互不相容事件可推广到n个事件间的关系个事件间的关系.现就互不相容事件叙述如下:在一次事件现就互不相容事件叙述如下:在一次事件中,如果中,如果n个事件个事件 两两互不相两两互不相容,则称容,则称 是互不相容的事件组是互不相容的事件组.如果互不相容的事件组如果互不相容的事件组 满足满足 ,则称事件组则称事件组 为一个划分为一个划分.可以验证集合的运算率均适用于事
10、件的可以验证集合的运算率均适用于事件的运算,即事件的运算满足下列关系式:运算,即事件的运算满足下列关系式:(1)交换律:)交换律:(2)结合律:)结合律:(3)分配律:)分配律:(4)德莫根)德莫根(Demorgan)公式:公式:其中分配律和德莫根公式可以推广到有限多个其中分配律和德莫根公式可以推广到有限多个 事件的情形事件的情形.返回返回例子例子1例例 一个货箱中装有一个货箱中装有12只同类型的产品,其中只同类型的产品,其中3只是一等品,只是一等品,9只是二等品,从其中随机地抽取只是二等品,从其中随机地抽取两次,每次任取一只,两次,每次任取一只,表示第表示第i次抽取的次抽取的是一等品,试用是
11、一等品,试用 表示下列事件:表示下列事件:B=两只都是一等品两只都是一等品C=两只都是二等品两只都是二等品D=一只一等品,另一只是二等品一只一等品,另一只是二等品E=第二次抽取的是一等品第二次抽取的是一等品解题过程解题过程解题过程解题过程解解:由题意,:由题意,第第i次抽取的是一等品次抽取的是一等品,故故 第第i次抽取的是二等品次抽取的是二等品例子例子2例例 从从1,2,3,4,5,6六个数字中任取一个六个数字中任取一个数,数,A=取得的数为取得的数为4的约数的约数,B=取得的数为取得的数为偶数偶数,C=取得的数不小于取得的数不小于5.试用集合表示下列事件试用集合表示下列事件:(1)(2)事件
12、事件“A发生,发生,C不发生不发生”;事件;事件“B,C至少有至少有一一个发生个发生”的逆事件的逆事件 解题过程解题过程例子例子2解题过程解题过程解解 设设i表示基本事件表示基本事件取得的数为取得的数为i所对应的样本所对应的样本点,则样本空间点,则样本空间(1)(2)返回返回练习题练习题1。指出下列事件中哪些是必然事件?哪些是不可。指出下列事件中哪些是必然事件?哪些是不可能事件?能事件?(1)某商店有男店员)某商店有男店员2人,女店员人,女店员8人,任意抽调人,任意抽调3人去人去做其他的工作,那么做其他的工作,那么A=3个都是女店员个都是女店员,B=3个都是男个都是男店员店员,C=至少有至少有
13、1个男店员个男店员,D=至少有至少有1个女店员个女店员(2)一批产品中只有一批产品中只有2件次品,现从中任取件次品,现从中任取3件,则件,则A=三三件都是次品件都是次品,B=至少至少1件正品件正品,C=至多至多1件正品件正品,D=恰有恰有2件次品和件次品和1件正品件正品练习题练习题2练习题练习题22。一个工人加工了。一个工人加工了4个零件,设个零件,设 表示第表示第 i个个零件是合格品,试用零件是合格品,试用 表示下列事件:表示下列事件:(1)没有一个零件是不合格品;)没有一个零件是不合格品;(2)至少有一个零件是不合格品;)至少有一个零件是不合格品;(3)只有一个零件是不合格品)只有一个零件
14、是不合格品.3。A,B,C为一次试验中的三个事件,试用为一次试验中的三个事件,试用A,B,C表示下列表示下列事件:事件:(1)A发生,发生,B,C不发生;不发生;(2)A,B中至少有一个发生;中至少有一个发生;(3)A,B,C至少有一个不发生;至少有一个不发生;(4)A,B,C至多有一个发至多有一个发生生.返回返回1.2 概概 率率一、概率的定义一、概率的定义1.概率的统计定义概率的统计定义2.概率的古典定义概率的古典定义3.概率的定义与简单计算概率的定义与简单计算二、概率的运算公式二、概率的运算公式 加法公式加法公式一、概率的定义一、概率的定义1.概率的统计定义概率的统计定义在相同的条件下进
15、行在相同的条件下进行n次重复试验,事件次重复试验,事件A发生的次数发生的次数m称为事件称为事件A发生的频数;发生的频数;m与与n的比值称为事件的比值称为事件A发生的频率,记作发生的频率,记作 引例一引例一一般地,当试验次数一般地,当试验次数n增大时,事件增大时,事件A发发生的频率生的频率 总是稳定在某个常数总是稳定在某个常数p附近,附近,这时就把这时就把p称为事件称为事件A发生的概率,简称发生的概率,简称事件事件A的概率,记作的概率,记作 上述事件的概率是用统计事件发生的频率来确上述事件的概率是用统计事件发生的频率来确定的,故这个定义称为概率的统计定义定的,故这个定义称为概率的统计定义.根据这
16、根据这个定义,通过大量的重复试验,用事件发生的个定义,通过大量的重复试验,用事件发生的频率近似地作为它的概率,这是求一个事件的频率近似地作为它的概率,这是求一个事件的概率的常用基本方法概率的常用基本方法.引例二引例二返回返回2.概率的古典定义概率的古典定义考虑下面两个随机试验:考虑下面两个随机试验:E1:投掷一颗均匀的骰子,观察其出现的:投掷一颗均匀的骰子,观察其出现的点数,基本事件有点数,基本事件有6个,由骰子的个,由骰子的“均匀均匀性性”可知,每一个基本事件发生的可能可知,每一个基本事件发生的可能性相等性相等.E2:一批产品有:一批产品有N个,要随机抽取一个,个,要随机抽取一个,检测其等级
17、,则检测其等级,则N个产品被抽取的机会个产品被抽取的机会是相同的,每一次检测的结果就是一个是相同的,每一次检测的结果就是一个基本事件,故基本事件,故N个基本事件出现的可能个基本事件出现的可能性相等性相等.这两个试验都具有以下特点:这两个试验都具有以下特点:(1)只有有限个基本事件只有有限个基本事件(2)每个基本事件在一次试验中发生的可能性相同每个基本事件在一次试验中发生的可能性相同.这类随机试验称为等可能概型,由于这种概型在概这类随机试验称为等可能概型,由于这种概型在概率论发展初期是主要研究对象,所以也称为古典概率论发展初期是主要研究对象,所以也称为古典概型型.在古典概型中,若基本事件的总数为
18、在古典概型中,若基本事件的总数为n,事件,事件包含的基本事件数为包含的基本事件数为m,则事件的概率定义,则事件的概率定义为为 ,这个定义称为概率的古典定义,这个定义称为概率的古典定义.返回返回3概率的定义与简单计算概率的定义与简单计算与随机试验相联系的数量指标与随机试验相联系的数量指标 ,都具,都具有下列共同的属性:有下列共同的属性:(1)(2)(3)为互不相容事件,则为互不相容事件,则 在数学上,刻划随机试验中事件在数学上,刻划随机试验中事件A的的 发生发生 的可能性大小的数值,如果满足上述三条性质,的可能性大小的数值,如果满足上述三条性质,就称为事件的概率就称为事件的概率.由上述三条基本性
19、质还可以推出:由上述三条基本性质还可以推出:引例三引例三返回返回二、概率的运算公式二、概率的运算公式加法公式加法公式由概率的性质知道,若事件由概率的性质知道,若事件A和和B互不相互不相容,即容,即 则则 AB事件事件 时,上式就不成立了时,上式就不成立了.AB而有而有该公式称为概率的加法公式该公式称为概率的加法公式加法公式可推广到有限个事件至少有一个加法公式可推广到有限个事件至少有一个发生的情形,如三个事件发生的情形,如三个事件 的并的加的并的加法公式为:法公式为:引例四引例四返回返回1.3条件概率条件概率一、条件概率与乘法公式一、条件概率与乘法公式1.条件概率条件概率2.乘法公式乘法公式二、
20、全概率公式与贝叶斯二、全概率公式与贝叶斯(Bayes)公式公式1.全概率公式全概率公式2.贝叶斯公式贝叶斯公式 补充点补充点练习题练习题返回一、条件概率与乘法公式一、条件概率与乘法公式一般地,把一般地,把“在事件在事件B已发生的条件下,事已发生的条件下,事件件A发生的概率发生的概率”称为条件概率,记作称为条件概率,记作,读作,读作“在条件在条件B下,事件下,事件A的概率的概率”.同理同理AB1.条件概率条件概率引例五引例五返回返回2.乘法公式乘法公式由条件概率的一般公式由条件概率的一般公式,得得 上述公式称为概率的乘法公式上述公式称为概率的乘法公式.概率的乘法公式可推广到有限个事件交概率的乘法
21、公式可推广到有限个事件交的情形的情形.设有设有n个事件个事件 满足满足 则则 当当n=3时时引例七引例七返回返回二、全概率公式与贝叶斯二、全概率公式与贝叶斯(Bayes)公式公式1.全概率公式全概率公式设设 是联系于一随机试验的完备是联系于一随机试验的完备事件组事件组.任一事件任一事件 可表示成可表示成 由前面已学公式得由前面已学公式得该公式称为全概率公式该公式称为全概率公式引例八引例八返回返回2.贝叶斯贝叶斯(Bayes)公式公式设设 是样本空间的一个完备事是样本空间的一个完备事件组件组,A是任一事件是任一事件,且且 ,则则该公式称为贝叶斯公式该公式称为贝叶斯公式.在使用该公式时往往先利用全
22、概率公式求出在使用该公式时往往先利用全概率公式求出引例九引例九返回返回补充点补充点对于全概率公式和贝叶斯公式对于全概率公式和贝叶斯公式.可以直观可以直观地进行如下理解地进行如下理解:把事件把事件A看成看成“结果结果”,把把 看成导致这一结果的看成导致这一结果的“原因原因”,把全概率公式看成为把全概率公式看成为“由原因推结果由原因推结果”,把把贝叶斯公式看成贝叶斯公式看成“由结果找原因由结果找原因”。两者。两者正正好相反好相反.返回返回1.4事件的独立性事件的独立性1.事件的独立性事件的独立性 引例十引例十 练习题练习题2.N重贝努利试验重贝努利试验 引例十一引例十一 练习题练习题返回返回1.事
23、件的独立性事件的独立性一般地,设事件一般地,设事件A,B是一随机试验的两个是一随机试验的两个事件事件,且且 ,若,若 ,则称事件则称事件B对事件对事件A是独立的,否则称为不是独立的,否则称为不独立的独立的.结论结论结论结论由定义可推出下列结论:由定义可推出下列结论:(1)若事件若事件A独立于事件独立于事件B,则事件,则事件B也独立于事件也独立于事件A,即两事件的独立性是相互的即两事件的独立性是相互的.(2)若事件若事件A与事件与事件B相互独立,则三对事件相互独立,则三对事件 与与 ,A 与与 ,与与 B也都是相互独立的也都是相互独立的.(3)事件事件A与与B相互独立的充要条件是,相互独立的充要
24、条件是,两事件相互独立的直观意义是一事件发生的概率两事件相互独立的直观意义是一事件发生的概率与另一事件是否发生互不影响与另一事件是否发生互不影响.推广推广推广推广事件的独立性可推广到有限个事件的情形事件的独立性可推广到有限个事件的情形:若事件组若事件组 中的任意中的任意k 个事件交的个事件交的概率等于它们的概率积,则称事件组概率等于它们的概率积,则称事件组 是相互独立的,也就是说任一事件的概率不受其是相互独立的,也就是说任一事件的概率不受其他事件发生与否的影响他事件发生与否的影响.例如例如:三个事件三个事件A,B,C若满足等式若满足等式 则称事件则称事件A,B,C是相互独立的是相互独立的 注意
25、点注意点注意点注意点事件组相互独立,其中任意两事件相互独事件组相互独立,其中任意两事件相互独立;反之却不一定正确立;反之却不一定正确.在实际问题中,两事件是否独立,并不总在实际问题中,两事件是否独立,并不总是用定义或充要条件来检验的,而可以根是用定义或充要条件来检验的,而可以根据具体情况来分析、判断据具体情况来分析、判断.只要事件之间只要事件之间没有明显的联系,我们就可以认为它们是没有明显的联系,我们就可以认为它们是相互独立的相互独立的.返回返回2.N重贝努利试验重贝努利试验如果随机试验只出现两种结果如果随机试验只出现两种结果 ,则称其为则称其为伯努里试验伯努里试验.在相同的条件下在相同的条件
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 基础知识
限制150内