新编基础物理学课后答案.doc
《新编基础物理学课后答案.doc》由会员分享,可在线阅读,更多相关《新编基础物理学课后答案.doc(45页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、新编基础物理学课后答案习题一1-1.质点运动学方程为:其中a,b,均为正常数,求质点速度和加速度与时间的关系式。分析:由速度、加速度的定义,将运动方程对时间t求一阶导数和二阶导数,可得到速度和加速度的表达式。解:1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即, 式中K为常量试证明电艇在关闭发动机后又行驶x距离时的速度为 。 其中是发动机关闭时的速度。分析:要求可通过积分变量替换,积分即可求得。证: , 1-3一质点在xOy平面内运动,运动函数为。(1)求质点的轨道方程并画出轨道曲线;(2)求时质点的位置、速度和加速度。分析:将运动方程x
2、和y的两个分量式消去参数t,便可得到质点的轨道方程。写出质点的运动学方程表达式。对运动学方程求一阶导、二阶导得和,把时间代入可得某时刻质点的位置、速度、加速度。解:(1)由得:代入 可得:,即轨道曲线。画图略(2)质点的位置可表示为: 由则速度: 由则加速度:则:当t=1s时,有当t=2s时,有1-4一质点的运动学方程为,x和y均以m为单位,t以s为单位。(1)求质点的轨迹方程;(2)在时质点的速度和加速度。分析同1-3.解:(1)由题意可知:x0,y0,由,可得,代入 整理得:,即轨迹方程 (2)质点的运动方程可表示为: 则: 因此, 当时,有1-5一质点沿半径为R的圆周运动,运动学方程为,
3、其中v0,b都是常量。(1)求t时刻质点的加速度大小及方向;(2)在何时加速度大小等于b; (3)到加速度大小等于b时质点沿圆周运行的圈数。分析:由质点在自然坐标系下的运动学方程,求导可求出质点的运动速率,因而,当时,可求出t,代入运动学方程,可求得时质点运动的路程,即为质点运动的圈数。解:(1)速率:,且 加速度: 则大小: 方向: (2)当a=b时,由可得:(3)当a=b时,代入可得: 则运行的圈数 1-9汽车在半径为400m的圆弧弯道上减速行驶,设在某一时刻,汽车的速率为,切向加速度的大小为。求汽车的法向加速度和总加速度的大小和方向。分析:由某一位置的、求出法向加速度,再根据已知切向加速
4、度求出的大小和方向。解:法向加速度的大小 方向指向圆心总加速度的大小如图1-9,则总加速度与速度夹角1-10. 质点在重力场中作斜上抛运动,初速度的大小为,与水平方向成角求质点到达抛出点的同一高度时的切向加速度,法向加速度以及该时刻质点所在处轨迹的曲率半径(忽略空气阻力)已知法向加速度与轨迹曲率半径之间的关系为。分析:运动过程中,质点的总加速度。由于无阻力作用,所以回落到抛出点高度时质点的速度大小,其方向与水平线夹角也是。可求出,如图1-10。再根据关系求解。解:切向加速度 法向加速度 因 1-13离水面高为h的岸上有人用绳索拉船靠岸,人以恒定速率v0拉绳子,求当船离岸的距离为s时,船的速度和
5、加速度的大小。分析:收绳子速度和船速是两个不同的概念。小船速度的方向为水平方向,由沿绳的分量与垂直绳的分量合成,沿绳方向的收绳的速率恒为。可以由求出船速和垂直绳的分量。再根据关系,以及与关系求解。解:如图1-13, 船速 当船离岸的距离为s时, 则, 即:第二章213一质量为m的小球最初位于如图2-13所示的A点,然后沿半径为r的光滑圆轨道ADCB下滑,试求小球到达C点时的角速度和对圆轨道的作用力.题图213分析:如图213,对小球做受力分析,合力提供向心力,由牛顿第二定律,机械能守恒定律求解。解:又:图213由、可得: 由、可得,214质量为m的摩托车,在恒定的牵引力F的作用下工作,它所受的
6、阻力与其速率的平方成正比,它能达到最大速率是 试计算从静止加速到所需的时间以及所走过的路程。分析:加速度等于零时,速度最大,阻力为变力,积分求时间、路程。解:设阻力,则加速度,当a=0时,速度达到最大值,则有:又,即:题图215,即所求的时间对式两边同乘以dx,可得:2-15如图2-15所示,A为定滑轮,B为动滑轮,3个物体的质量分别为m1=200g,m2=100g,m3=50g.(1)求每个物体的加速度(2)求两根绳中的张力(滑轮和绳子质量不计,绳子的伸长和摩擦力可略)。分析:相对运动。相对地运动,、相对B运动,。根据牛顿牛顿定律和相对运动加速度的关系求解。解:如下图2-15,分别是m1、m
7、2、m3的受力图。设a1、a2、a3、a分别是m1、m2、m3、B对地的加速度;a2B、a3B分别是m2、m3对B的加速度,以向上为正方向,可分别得出下列各式图215又:且:则:则:又:则由,可得:(2)将a3的值代入式,可得:。2-34设。(1)当一质点从原点运动到时,求所作的功;(2)如果质点到处时需0.6s,试求的平均功率;(3)如果质点的质量为1kg,试求动能的变化。 分析:由功、平均功率的定义及动能定理求解,注意:外力作的功为F所作的功与重力作的功之和。解:(1) ,做负功(2)(3) = -45+ = -85J题图2-372-37求把水从面积为的地下室中抽到街道上来所需作的功。已知
8、水深为1.5m,水面至街道的竖直距离为5m。 分析:由功的定义求解,先求元功再积分。解:如图以地下室的O为原点,取X坐标轴向上为正,建立如图坐标轴。选一体元,则其质量为。把从地下室中抽到街道上来所需作的功为 故2-41一沿x轴正方向的力作用在一质量为3.0kg的质点上。已知质点的运动方程为,这里以m为单位,时间以s为单位。试求:(1)力在最初内作的功;(2)在时,力的瞬时功率。 分析:由速度、加速度定义、功能原理、牛顿第二定律求解。解:则 由功能原理,有(2)时,则瞬时功率242.以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,若铁锤击第一次时,能将小钉击入木板内1cm
9、,问击第二次时能击入多深?(假定铁锤两次打击铁钉时的速度相同。) 分析:根据功能原理,因铁锤两次打击铁釘时速度相同,所以两次阻力的功相等。注意:阻力是变力。解:设铁钉进入木板内时,木板对铁钉的阻力为由于铁锤两次打击铁钉时的速度相同,故所以,。第二次时能击入深。243从地面上以一定角度发射地球卫星,发射速度应为多大才能使卫星在距地心半径为r的圆轨道上运转? 分析:地面附近万有引力即为重力,卫星圆周运动时,万有引力提供的向心力,能量守恒。解:设卫星在距地心半径为r的圆轨道上运转速度为v, 地球质量为M, 半径为,卫星质量为m.根据能量守恒,有又由卫星圆周运动的向心力为卫星在地面附近的万有引力即其重
10、力,故联立以上三式,得244一轻弹簧的劲度系数为,用手推一质量的物体A把弹簧压缩到离平衡位置为处,如图2-44所示。放手后,物体沿水平面移动距离而停止,求物体与水平面间的滑动摩擦系数。 分析:系统机械能守恒。 解:物体沿水平面移动过程中,由于摩擦力做负功,致使系统(物体与弹簧)的弹性势能全部转化为内能(摩擦生热)。根据能量关系,有题图245所以,题图244248一人从10 m深的井中提水起始时桶中装有10 kg的水,桶的质量为1 kg,由于水桶漏水,每升高1 m要漏去0.2 kg的水求水桶匀速地从井中提到井口,人所作的功 分析:由于水桶漏水,人所用的拉力F是变力,变力作功。解:选竖直向上为坐标
11、y轴的正方向,井中水面处为原点. 由题意知,人匀速提水,所以人所用的拉力F等于水桶的重量即: 人的拉力所作的功为: 2-51一个具有单位质量的质点在力场中运动,其中t是时间,设该质点在时位于原点,且速度为零,求s时该质点受到的对原点的力矩和该质点对原点的角动量。 分析:由牛顿定律、力矩、角动量定义求解。解:对质点由牛顿第二律有 又因为所以得同样由 得所以t=2时 2-54在光滑的水平桌面上,用一根长为的绳子把一质量为m的质点联结到一固定点O. 起初,绳子是松弛的,质点以恒定速率沿一直线运动。质点与O最接近的距离为b,当此质点与O的距离达到时,绳子就绷紧了,进入一个以O为中心的圆形轨道。(1)求
12、此质点的最终动能与初始动能之比。能量到哪里去了?(2)当质点作匀速圆周运动以后的某个时刻,绳子突然断了,它将如何运动,绳断后质点对O的角动量如何变化? 分析:绳子绷紧时,质点角动量守恒。解:(1)当质点做圆周运动时,可得其速度所以最终动能与初始动能之比,其他能量转变为绳子的弹性势能,以后转化为分子内能.(2)绳子断后,质点将按速度沿切线方向飞出,做匀速直线运动质点对0点的角动量恒量。第三章题图3-23-2 如题图3-2所示,一根均匀细铁丝,质量为M,长度为,在其中点O处弯成角,放在平面内,求铁丝对轴、轴、轴的转动惯量。分析:取微元,由转动惯量的定义求积分可得解:(1)对x轴的转动惯量为:(2)
13、对y轴的转动惯量为:(3)对Z轴的转动惯量为:3-5 一质量为的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如题图3-5所示轴水平且垂直于轮轴面,其半径为,整个装置架在光滑的固定轴承之上当物体从静止释放后,在时间内下降了一段距离试求整个轮轴的转动惯量(用表示) 分析:隔离物体,分别画出轮和物体的受力图,由转动定律和牛顿第二定律及运动学方程求解。题图3-5解:设绳子对物体(或绳子对轮轴)的拉力为T,则根据牛顿运动定律和转动定律得: b 题图3-5由运动学关系有: 由、式解得: 又根据已知条件 , 将式代入式得: 3-7 如题图3-7所示,质量为m的物体与绕在质量为M的定滑轮上的轻绳相连,设
14、定滑轮质量M=2m,半径R,转轴光滑,设,求:(1)下落速度与时间t的关系;(2)下落的距离;(3)绳中的张力T。分析:对质量为m物体应用牛顿第二定律、对滑轮应用刚体定轴转动定律列方程。解:(1)设物体m与滑轮间的拉力大小为T,则题图3-7 解:式得,并代入式得(2)设物体下落的距离为s,则(3)由(1)的式得,3-8 如题图3-8所示,一个组合滑轮由两个匀质的圆盘固接而成,大盘质量,半径,小盘质量,半径。两盘边缘上分别绕有细绳,细绳的下端各悬质量的物体,此物体由静止释放,求:两物体的加速度大小及方向。分析:分别对物体应用牛顿第二定律,对滑轮应用刚体定轴转动定律解:设物体的加速度大小分别为与滑
15、轮的拉力分别为题图3-8 把数据代入,解上述各式得 方向向上 方向向下3-9 如题图3-9所示,一倾角为30的光滑斜面固定在水平面上,其上装有一个定滑轮,若一根轻绳跨过它,两端分别与质量都为m的物体1和物体2相连。(1)若不考虑滑轮的质量,求物体1的加速度。(2)若滑轮半径为r,其转动惯量可用m和r表示为(k是已知常量),绳子与滑轮之间无相对滑动,再求物体1的加速度。分析:(1)对两物体分别应用牛顿第二定律列方程。(2)两物体分别应用牛顿第二定律、对滑轮应用刚体定轴转动定律列方程。解:设物体1、物体2与滑轮间的拉力分别为、它们对地的加速度为a。(1)若不考虑滑轮的质量,则物体1、物体2与滑轮间
16、的拉力、相等,记为T。则对1、2两物体分别应用牛顿第二定律得,题图3-9解上两式得:,方向竖直向下。(2)若考虑滑轮的质量,则物体1、物体2与滑轮间的拉力、不相等。则对1、2两物体分别应用牛顿第二定律,和对滑轮应用刚体定轴转动定律得解上述各式得:,方向竖直向下。3-11 一质量为M,长为的匀质细杆,一端固接一质量为m的小球,可绕杆的另一端无摩擦地在竖直平面内转动,现将小球从水平位置A向下抛射,使球恰好通过最高点C,如题图3-11所示。求:(1)下抛初速度;(2)在最低点B时,细杆对球的作用力。分析:由机械能守恒定律、牛顿第二定律、角线量关系求解。解:(1)如图3-11,取向下抛点作势能零点,由
17、机械能守恒定律得,题图3-11J=解得,(2)取最低点作势能零点,由机械能守恒定律和牛顿第二定律得, 解:得,3-16 一长为L、质量为m的匀质细棒,如题图3-16所示,可绕水平轴在竖直面内旋转,若轴光滑,今使棒从水平位置自由下摆。求:(1)在水平位置和竖直位置棒的角加速度;(2)棒转过角时的角速度。分析:由转动定律求角加速度,由在转动过程中机械能守恒求角速度。解:(1)有刚体定轴转动定律得,题图3-16细棒在水平位置的角加速度为:细棒在竖直位置的角加速度为:(2)细棒在转动的过程中机械能守恒,由机械能守恒定律得,解上述两式得:3-19 质量为的子弹,以速度水平射入放在光滑水平面上质量为、半径
18、为R的圆盘边缘,并留在该处,的方向与射入处的半径垂直,圆盘盘心有一竖直的光滑固定轴,如所示,试求子弹射入后圆盘的角速度。分析:在子弹射入圆盘的过程中,子弹和圆盘组成的系统对转轴的角动量和力矩为零,因此对转轴的角动量守恒。解:设子弹射入后圆盘的角速度为,则由角动量守恒定律得,题图3-19解上式得:3-20一均质细杆,长,可绕通过一端的水平光滑轴O在铅垂面内自由转动,如题图3-20所示。开始时杆处于铅垂位置,今有一子弹沿水平方向以的速度射入细杆。设入射点离O点的距离为 ,子弹的质量为细杆质量的。试求:(1)子弹和细杆开始共同运动的角速度。(2)子弹和细杆共同摆动能到达的最大角度。分析:子弹射入细杆
19、过程中,子弹和细杆组成的系统角动量守恒;细杆摆动时,机械能守恒。解(1)子弹打进杆的过程中子弹和杆组成的系统角动量守恒,设子弹开始时的角速度为,弹和杆一起共同运动的角速度为,则由角动量守恒定律得: O题图3-20又把式代入式并解得: (2)设子弹与杆共同摆动能达到最大角度为角,在摆动的过程中杆和子弹及地球组成的系统机械能守恒,则由机械能守恒定律得, 把式及,L=1代入式解得:。即第四章4-2 长度为1m的米尺L静止于中,与轴的夹角系相对系沿轴运动,在系中观察得到的米尺与轴的夹角为,试求:(1)系相对系的速度是多少?(2)系中测得的米尺的长度?分析:本题考察的是长度收缩效应。根据两个参考系下米尺
20、的不同长度再结合长度收缩效应我们可以很方便的得到两个参考系之间的相对速度解:(1)米尺相对系静止,它在轴的投影分别为:米尺相对S系沿x方向运动,设运动速度为v,为S系中的观察者,米尺在x方向将产生长度收缩,而y方向的长度不变,即故米尺与x轴的夹角满足将与、的值代入可得:(2)在S系中测得米尺的长度为:4-3 已知介子在其静止系中的半衰期为。今有一束介子以的速度离开加速器,试问,从实验室参考系看来,当介子衰变一半时飞越了多长的距离?分析:本题考察的是时间膨胀效应。根据静止系中的半衰期加上时间膨胀效应我们可以求出在实验室参考系中的半衰期,然后根据该半衰期求出飞行距离。解:在介子的静止系中,半衰期是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新编 基础 物理学 课后 答案
限制150内