初中数学教案简案模板5篇.doc
《初中数学教案简案模板5篇.doc》由会员分享,可在线阅读,更多相关《初中数学教案简案模板5篇.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 初中数学教案简案模板5篇 一、教学任务分析 1、教学目标定位 依据数学课程标准和素养教育的要求,结合学生的认知规律及心理特征而确定,即:七年级的学生对身边好玩事物布满奇怪心,对一些有规律的问题有探求的欲望,有很强的表现欲,同时又具备了肯定的归纳、总结表达的力量。因此,确定如下教学目标: (1).学问技能目标 让学生把握多边形的内角和的公式并娴熟应用。 (2).过程和方法目标 让学生经受学问的形成过程,熟悉数学特征,获得数学阅历,进一步进展学生的说理意识和简洁推理,合情推理力量。 (3).情感目标 鼓励学生的学习热忱,调动他们的学习积极性,使他们有自信念,激发学生乐于合作沟通意识和独立思索的习
2、惯。 2、教学重、难点定位 教学重点是多边形的内角和的得出和应用。 教学难点是探究和归纳多边形内角和的过程。 二、教学内容分析 1、教材的地位与作用 本课选自人教版数学七年级下册第七章第三节多边形的内角和的第一课时。本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。 2、联系及应用 本节课是以三角形的学问为根底,仿照三角形建立多边形的有关概念。因此 多边形的边、内角、内角和等等都可以同三角形类比。通过这节课的学习,可以培育学生探究与归纳力量,体会把简单化为简洁,化未知为已知,从特别到一般和转化
3、等重要的思想方法。而多边形在工程技术和有用图案等方面有很多的实际应用,下一节平面镶嵌就要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。 三、教学诊断分析 学生对三角形的学问都已经把握。让学生由三角形的内角和等于180,是一个定值,猜测四边形的内角和也是一个定值,这是学生很简单理解的地方。由几个特别的四边形的内角和动身,譬如长方形、正方形的内角和都等于360,可知假如四边形的内角和是一个定值,这个定值是360。要得到四边形的内角和等于360这个结论最直接的方法就是用量角器来度量。让学生动手探究实践,在探究过程中发觉问题度量会有误差。发觉问题后接着引导学生联想对角线的作用,四
4、边形的一条对角线,把它分成了两个三角形,应用三角形的内角和等于180,就得到四边形的内角和等于360。让学生从特别四边形的内角和联想一般四边形的内角和,并在思想上引导,学习将新问题化归为已有结论的思想方法,这里学生都简单理解。课堂教学设计中,在探究五边形,六边形和七边形的内角和时,让学生动手实践,设置探究活动二,为了让学生拓宽思路,从不同的角度去思索这个问题,这个活动对学生的动手力量要求进一步提高了,学生对这个问题的理解略微有些难度,但学生可依据自己本身的特点来加以补充和完善。在教学设计中,要求依据小组选择的方法探究多边形的内角和。首先,小组内各个成员对所选择的方法要了解,能够把把握的学问运用
5、到实践中;再者,小组内各个成员需要分工协作,才能够顺当的把任务完成;最终,学生还需要把自己的思维从感性熟悉提升到理性熟悉的高度,这样就培育了学生合情推理的意识。 四、教法特点及预期效果分析 本节课借鉴了美国教育家杜威的在做中学的理论和叶圣陶先生所提倡的解放学生的手,解放学生的大脑,解放学生的时间的思想,我确定如下教法和学法: 1、教学方法的设计 我采纳了探究式教学方法,整个探究学习的过程布满了师生之间,学生之间的沟通和互动,表达了教师是教学活动的组织者、引导者、合,学生才是学习的主体。 2、活动的开展 利用学生的奇怪心设疑、解疑,组织活泼互动、有效的教学活动,鼓舞学生积极参加,大胆猜测,使学生
6、在自主探究和合作沟通中理解和把握本节课的内容。 3、现代教育技术的应用 我利用课件帮助教学,适时呈现问题情景,以丰富学生的感性熟悉,增加直观效果,提高课堂效率。探究活动在本次教学设计中占了特别大的比例,探究活动一设置目的让学生动手实践,并把新学问与学过的三角形的相关学问联系起来;探究活动二设置目的让学生拓宽思路,为放开书本的束缚打下根底;培育学生动手操作的力量和合情推理的意识。通过师生共同活动,训练学生的发散性思维,培育学生的创新精神;使学生懂得数学内容普遍存在相互联系,相互转化的特点。练习活动的设计,目的一检查学生的把握学问的状况,并促进学生积极思索;目的二凸现小组合作的特点,并促进学生情感
7、沟通。 以上是我对多边形的内角和的教学设计说明。 初中数学教案简案模板篇2 学问技能目标 1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质; 2、利用反比例函数的图象解决有关问题。 过程性目标 1、经受对反比例函数图象的观看、分析、争论、概括过程,会说出它的性质; 2、探究反比例函数的图象的性质,体会用数形结合思想解数学问题。 教学过程 一、创设情境 上节的练习中,我们画出了问题1中函数的图象,发觉它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来争论一般的反比例函数(k是常数,k0)的图象,探究它有什么性质。 二、探究归纳 1、画出函数的图象。 分析画出函数
8、图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x0。 解 1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值: 2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(6,1)、(3,2)、(2,3)等。 3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。 上述图象,通常称为双曲线(hyperbola)。 提问这两条曲线会与x轴、y轴相交吗?为什么? 学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步把握画函
9、数图象的步骤)。 学生争论、沟通以下问题,并将争论、沟通的结果回答下列问题。 1、这个函数的图象在哪两个象限?和函数的图象有什么不同? 2、反比例函数(k0)的图象在哪两个象限内?由什么确定? 3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律? 反比例函数有以下性质: (1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而削减; (2)当k0时,函数的图象在其次、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。 注 1、双曲线的两个分支与x轴和y轴没有交点; 2、双
10、曲线的两个分支关于原点成中心对称。 以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义? 在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。 在问题2中反映了在面积肯定的状况下,饲养场的一边越长,另一边越小。 三、实践应用 例1若反比例函数的图象在其次、四象限,求m的值。 分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+10,由这两个条件可解出m的值。 解由题意,得解得。 例2已知反比例函数(k0),当x0时,y随x的增大而增大,求一次函数y=kxk的图象经过的象限。 分析由于反比例函数(k0),当x0时,y随x的增大而增大,因此k0,而一次函数y
11、=kxk中,k0,可知,图象过二、四象限,又k0,所以直线与y轴的交点在x轴的上方。 解由于反比例函数(k0),当x0时,y随x的增大而增大,所以k0,所以一次函数y=kxk的图象经过一、二、四象限。 例3已知反比例函数的图象过点(1,2)。 (1)求这个函数的解析式,并画出图象; (2)若点A(5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上? 分析(1)反比例函数的图象过点(1,2),即当x=1时,y=2。由待定系数法可求出反比例函数解析式;再依据解析式,通过列表、描点、连线可画出反比例函数的图象; (2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原
12、点的对称点是否在图象上。 解(1)设:反比例函数的解析式为:(k0)。 而反比例函数的图象过点(1,2),即当x=1时,y=2。 所以,k=2。 即反比例函数的解析式为:。 (2)点A(5,m)在反比例函数图象上,所以, 点A的坐标为。 点A关于x轴的对称点不在这个图象上; 点A关于y轴的对称点不在这个图象上; 点A关于原点的对称点在这个图象上; 例4已知函数为反比例函数。 (1)求m的值; (2)它的图象在第几象限内?在各象限内,y随x的增大如何变化? (3)当3x时,求此函数的最大值和最小值。 解(1)由反比例函数的定义可知:解得,m=2。 (2)由于20,所以反比例函数的图象在其次、四象
13、限内,在各象限内,y随x的增大而增大。 (3)由于在第个象限内,y随x的增大而增大, 所以当x=时,y最大值=; 当x=3时,y最小值=。 所以当3x时,此函数的最大值为8,最小值为。 例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。 (1)写出用高表示长的函数关系式; (2)写出自变量x的取值范围; (3)画出函数的图象。 解(1)由于100=5xy,所以。 (2)x0。 (3)图象如下: 说明由于自变量x0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。 四、沟通反思 本节课学习了画反比例函数的图象和探讨了反比例函数的性质。 1、反比例函数的图象是双
14、曲线(hyperbola)。 2、反比例函数有如下性质: (1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而削减; (2)当k0时,函数的图象在其次、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。 五、检测反应 1、在同始终角坐标系中画出以下函数的图象: (1);(2)。 2、已知y是x的反比例函数,且当x=3时,y=8,求: (1)y和x的函数关系式; (2)当时,y的值; (3)当x取何值时,? 3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。 4、已知反比例函数经过点A(2,m)和B
15、(n,2n),求: (1)m和n的值; (2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x10x2,试比拟y1和y2的大小。 p= 初中数学教案简案模板篇3 教学目标 1.了解代数和的概念,理解有理数加减法可以相互转化,会进展加减混合运算; 2. 通过学习一切加减法运算,都可以统一成加法运算,连续渗透数学的转化思想; 3.通过加法运算练习,培育学生的运算力量。 教学建议 (一)重点、难点分析 本节课的重点是依据运算法则和运算律精确快速地进展有理数的加减混合运算,难点是省略加号与括号的代数和的计算. 由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学教案 模板
限制150内