《初二数学上学期的知识点.docx》由会员分享,可在线阅读,更多相关《初二数学上学期的知识点.docx(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 初二数学上学期的知识点初二数学上学期的学问点1 第十一章三角形 一、学问框架: 学问概念: 1、三角形:由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。 3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。 5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 6、三角形的稳定性:三角形的外形是固定的,三角形的这共性质叫三角形的稳定性。 7、多边形:
2、在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 8、多边形的内角:多边形相邻两边组成的角叫做它的内角。 9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。 10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。 12、平面镶嵌:用一些不重叠摆放的多边形把平面的一局部完全掩盖,叫做用多边形掩盖平面, 13、公式与性质: 三角形的内角和:三角形的内角和为180 三角形外角的性质: 性质1:三角形的一个外角等于和它不相邻的两个内角的和。 性质2:三角形的一个外角大于任何一个
3、和它不相邻的内角。 多边形内角和公式:边形的内角和等于180 多边形的外角和:多边形的外角和为360。 多边形对角线的条数: 从边形的一个顶点动身可以引条对角线,把多边形分成个三角形。 边形共有条对角线。 第十二章全等三角形 一、学问框架: 二、学问概念: 1、根本定义: 全等形:能够完全重合的两个图形叫做全等形。 全等三角形:能够完全重合的两个三角形叫做全等三角形。 对应顶点:全等三角形中相互重合的顶点叫做对应顶点。 对应边:全等三角形中相互重合的边叫做对应边。 对应角:全等三角形中相互重合的角叫做对应角。 2、根本性质: 三角形的稳定性:三角形三边的长度确定了,这个三角形的外形、大小就全确
4、定,这共性质叫做三角形的稳定性。 全等三角形的性质:全等三角形的对应边相等,对应角相等。 3、全等三角形的判定定理: 边边边():三边对应相等的两个三角形全等。 边角边():两边和它们的夹角对应相等的两个三角形全等。 角边角():两角和它们的夹边对应相等的两个三角形全等。 角角边():两角和其中一个角的对边对应相等的两个三角形全等。 斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等。 4、角平分线: 画法: 性质定理:角平分线上的点到角的两边的距离相等。 性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上。 5、证明的根本方法: 明确命题中的已知和求证。(包括隐含条件
5、,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系) 依据题意,画出图形,并用数字符号表示已知和求证。 经过分析,找出由已知推出求证的途径,写出证明过程。 第十三章轴对称 一、学问框架: 二、学问概念: 1、根本概念: 轴对称图形:假如一个图形沿一条直线折叠,直线两旁的局部能够相互重合,这个图形就叫做轴对称图形。 两个图形成轴对称:把一个图形沿某一条直线折叠,假如它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。 线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。 等腰三角形:有两条边相等的三角形叫做等腰三角形。相等的两条边叫
6、做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。 等边三角形:三条边都相等的三角形叫做等边三角形。 2、根本性质: 对称的性质: 不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线。 对称的图形都全等。 线段垂直平分线的性质: 线段垂直平分线上的点与这条线段两个端点的距离相等。 与一条线段两个端点距离相等的点在这条线段的垂直平分线上。 关于坐标轴对称的点的坐标性质 初二数学上学期的学问点2 第一章勾股定理 定义:假如直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。 判定:假如三角形的三边长a,
7、b,c满意a +b = c,那么这个三角形是直角三角形。 定义:满意a +b =c的三个正整数,称为勾股数。 其次章实数 定义:任何有限小数或无限循环小数都是有理数。无限不循环小数叫做无理数 (有理数总可以用有限小数或无限循环小数表示) 一般地,假如一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。 特殊地,我们规定0的算术平方根是0。 一般地,假如一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根) 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。 求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。 一般地,假如一个数x的立方等于a,那么这
8、个数x就叫做a的立方根(也叫做三次方根)。 正数的立方根是正数;0的立方根是0;负数的立方根是负数。 求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。 有理数和无理数统称为实数,即实数可以分为有理数和无理数。 每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。 在数轴上,右边的点表示的数比左边的点表示的数大。 第三章图形的平移与旋转 定义:在平面内,将一个图形沿某个方向移动肯定的距离,这样的图形运动称为平移。平移不转变图形的外形和大小。 经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。 在平面内,将一
9、个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。旋转不转变图形的大小和外形。 任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。 第四章、三角形 一、学问框架: 二、学问概念: 1.三角形:由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。 3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。 5.角平分线:三角形的一个内角的
10、平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 6.三角形的稳定性:三角形的外形是固定的,三角形的这共性质叫三角形的稳定性。 7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 8.多边形的内角:多边形相邻两边组成的角叫做它的内角。 9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。 10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。 12.平面镶嵌:用一些不重叠摆放的多边形把平面的一局部完全掩盖,叫做多边形掩盖平面(平面镶嵌
11、)。 镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就能拼成一个平面图形。 13.公式与性质: 三角形的内角和:三角形的内角和为180 三角形外角的性质: 性质1:三角形的一个外角等于和它不相邻的两个内角的和。 性质2:三角形的一个外角大于任何一个和它不相邻的内角。 多边形内角和公式:边形的内角和等于180 多边形的外角和:多边形的外角和为360。 多边形对角线的条数:从边形的一个顶点动身可以引条对角线,把多边形分成个三角形.边形共有条对角线。 第五章:轴对称 1.根本概念: 轴对称图形:假如一个图形沿一条直线折叠,直线两旁的局部能够相互重合,这个图形就叫做轴对称图形
12、。 两个图形成轴对称:把一个图形沿某一条直线折叠,假如它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。 线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。 等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。 等边三角形:三条边都相等的三角形叫做等边三角形。 2.根本性质: 对称的性质: 不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线。 对称的图形都全等。 线段垂直平分线的性质: 线段垂直平分线上的点与这条线段两个端点的距离相等
13、。 与一条线段两个端点距离相等的点在这条线段的垂直平分线上。 关于坐标轴对称的点的坐标性质 等腰三角形的性质: 等腰三角形两腰相等。 等腰三角形两底角相等(等边对等角)。 等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合。 等腰三角形是轴对称图形,对称轴是三线合一(1条)。 等边三角形的性质: 等边三角形三边都相等。 等边三角形三个内角都相等,都等于60 等边三角形每条边上都存在三线合一。 等边三角形是轴对称图形,对称轴是三线合一(3条)。 3.根本判定: 等腰三角形的判定: 有两条边相等的三角形是等腰三角形。 假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
14、等边三角形的判定: 三条边都相等的三角形是等边三角形。 三个角都相等的三角形是等边三角形。 有一个角是60的等腰三角形是等边三角形。 4.根本方法: 做已知直线的垂线: 做已知线段的垂直平分线: 作对称轴:连接两个对应点,作所连线段的垂直平分线。 作已知图形关于某直线的对称图形: 在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短。 初二数学上学期的学问点3 (一)运用公式法: 我们知道整式乘法与因式分解互为逆变形。假如把乘法公式反过来就是把多项式分解因式。于是有: a2-b2=(a+b)(a-b) a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 假如把乘法公式反过
15、来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。 (二)平方差公式 平方差公式 (1)式子:a2-b2=(a+b)(a-b) (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。 (三)因式分解 1.因式分解时,各项假如有公因式应先提公因式,再进一步分解。 2.因式分解,必需进展到每一个多项式因式不能再分解为止。 (四)完全平方公式 (1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到: a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 这就是说,两个数的平方和,加上(或
16、者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。 把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。 上面两个公式叫完全平方公式。 (2)完全平方式的形式和特点 项数:三项 有两项是两个数的的平方和,这两项的符号一样。 有一项为哪一项这两个数的积的两倍。 (3)当多项式中有公因式时,应当先提出公因式,再用公式分解。 (4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。 (5)分解因式,必需分解到每一个多项式因式都不能再分解为止。 (五)分组分解法 我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因
17、式法,再看它又不能用公式法分解因式. 假如我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式. 原式=(am+an)+(bm+bn) =a(m+n)+b(m+n) 做到这一步不叫把多项式分解因式,由于它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能连续分解,所以 原式=(am+an)+(bm+bn) =a(m+n)+b(m+n) =(m+n)(a+b). 全等三角形的性质:全等三角形对应边相等、对应角相等。 全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等
18、(AAS)、斜边和直角边相等的两直角三角形(HL)。 角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等 角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。 证明两三角形全等或利用它证明线段或角的相等的根本方法步骤:、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),、回忆三角形判定,搞清我们还需要什么,、正确地书写证明格式(挨次和对应关系从已知推导出要证明的问题). 这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,假如把一个多项式的项分组并提取公因式后它们的另一个因式正好一样,那么这个多
19、项式就可以用分组分解法来分解因式. (六)提公因式法 1.在运用提取公因式法把一个多项式因式分解时,首先观看多项式的构造特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设帮助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进展适当的变形,或转变符号,直到可确定多项式的公因式. 2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进展因式分解要留意: 1.必需先将常数项分解成两个因数的积,且这两个因数的代数和等于 一次项的系数. 2.将常数项分解成满意要求的两个因数积的屡次尝试,一般步骤: 列出常
20、数项分解成两个因数的积各种可能状况; 尝试其中的哪两个因数的和恰好等于一次项系数. 3.将原多项式分解成(x+q)(x+p)的形式. (七)分式的乘除法 1.把一个分式的分子与分母的公因式约去,叫做分式的约分. 2.分式进展约分的目的是要把这个分式化为最简分式. 3.假如分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.假如分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分. 4.分式约分中留意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3. 5.分式的分子或分母带符
21、号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.固然,简洁的分式之分子分母可直接乘方. 6.留意混合运算中应先算括号,再算乘方,然后乘除,最终算加减. (八)分数的加减法 1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来. 2.通分和约分都是依据分式的根本性质进展变形,其共同点是保持分式的值不变. 3.一般地,通分结果中,分母不绽开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作预备. 4.通分的依据:分式的根本性质.
22、 5.通分的关键:确定几个分式的公分母. 通常取各分母的全部因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 6.类比分数的通分得到分式的通分: 把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. 7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。 同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。 8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减. 9.同分母分式相加减,分母不变,只须将分子作加减运算,但留意每个分子是个整体,要适时添上括号. 10.对于整式和分式之间的加
23、减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分. 11.异分母分式的加减运算,首先观看每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化. 12.作为最终结果,假如是分式则应当是最简分式. (九)含有字母系数的一元一次方程 1.含有字母系数的一元一次方程 引例:一数的a倍(a0)等于b,求这个数。用x表示这个数,依据题意,可得方程ax=b(a0) 在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。 含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法一样
24、,但必需特殊留意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零 元一次方程 1.二元一次方程的定义含有两个未知数,并且未知项的”次数是1,系数不是O,这样的整式方程,叫做二元一次方程. 二元一次方程指的是有两个未知数的,而且未知数的质数都是1的方程式。由二元一次方程衍生出了二元一次方程组、二元一次方程的解等方面的学问,一般来说,解二元一次方程都需要把方程中的未知数的个数削减,然后再解,它的方程式是X-Y=1。 2.二元一次方程的一般形式ax+by=c(其中x、y少是未知数,a、b、c是字母已知数,且abO). 3.推断一个方程是二元一次方程,它必需同时满意以下四个条件 (l)含有
25、两个未知数; (2)未知项的次数都是1; (3)未知项的系数都不是仇 (4)等号两边的代数式是整式,即方程是整式方程. 二元一次方程解题技巧: 每个人初学二元一次方程的时候,总是会觉得非常难解的,但是只要你把握了解题技巧,自然而然就能解开。首先要想解开一个二元一次方程,就应当是解开二元一次方程组,第一步做的就是把第一个和其次个方程组合并,然后把需要解开的项移到一旁,然后合并同类项,最终就可以将解得的一个未知数带入原先的方程中,就可以得知两个未知数的值。 通常求一个二元一次方程解的方法是:用含有一个未知数的代数式表示另一个未知数,如3x-x/2=7变形为y=2(3x-7),给出二的一个值,就可以求出少的对应值,这样就得到了一个方程的解。适合一个二元一次方程的每一对未知数的值叫做二元一次方程的一个解.由于任何一个二元一次方程,让其中一个未知数取任意一个值,都可以求出与其对应的另一个未知数的值,因此,任何一个二元一次方程都有很多多个解.但若对未知数的取值附加某些条件限制时,方程的解可能只有有限个.
限制150内