二阶常系数非齐次线性微分方程解法及例题(精品).ppt
《二阶常系数非齐次线性微分方程解法及例题(精品).ppt》由会员分享,可在线阅读,更多相关《二阶常系数非齐次线性微分方程解法及例题(精品).ppt(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、f(x)Pm(x)ex型二、f(x)exPl(x)cosxPn(x)sinx型12.9 二阶常系数非齐次线性微分方程上页下页铃结束返回首页 方程ypyqyf(x)称为二阶常系数非齐次线性微分方程 其中p、q是常数 二阶常系数非齐次线性微分方程的通解是对应的齐次方程的通解yY(x)与非齐次方程本身的一个特解yy*(x)之和 yY(x)y*(x)上页下页铃结束返回首页提示 Q(x)(2p)Q(x)(2pq)Q(x)exQ(x)+2Q(x)+2Q(x)expQ(x)+Q(x)ex+qQ(x)ex一、f(x)Pm(x)ex 型y*Q(x)ex 设方程ypyqyPm(x)ex 特解形式为 下页Q(x
2、)(2p)Q(x)(2pq)Q(x)Pm(x)()则得 Q(x)exQ(x)exqQ(x)ex y*py*qy*上页下页铃结束返回首页提示 此时2pq0 要使()式成立 Q(x)应设为m次多项式 Qm(x)b0 xmb1xm1 bm1xbm (1)如果不是特征方程r2prq0的根 则 y*Qm(x)ex 下页一、f(x)Pm(x)ex 型y*Q(x)ex 设方程ypyqyPm(x)ex 特解形式为 Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)()则得 上页下页铃结束返回首页提示 此时2pq0 但2p0 要 使()式 成 立 Q(x)应 设 为 m1次 多 项 式 Q(x)xQm(x)其
3、中Qm(x)b0 xm b1xm1 bm1xbm (2)如果是特征方程r2prq0的单根 则y*xQm(x)ex 下页 (1)如果不是特征方程r2prq0的根 则 y*Qm(x)ex 一、f(x)Pm(x)ex 型y*Q(x)ex 设方程ypyqyPm(x)ex 特解形式为 Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)()则得 上页下页铃结束返回首页提示 此时2pq0 2p0 要使()式成立 Q(x)应设为m2次多项式 Q(x)x2Qm(x)其中Qm(x)b0 xmb1xm1 bm1xbm (3)如果是特征方程r2prq0的重根 则y*x2Qm(x)ex 下页 (2)如果是特征方程r2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二阶常 系数 非齐次 线性 微分方程 解法 例题 精品
限制150内