勾股定理说课稿范文勾股定理说课稿范文学情分析(十五篇).docx
《勾股定理说课稿范文勾股定理说课稿范文学情分析(十五篇).docx》由会员分享,可在线阅读,更多相关《勾股定理说课稿范文勾股定理说课稿范文学情分析(十五篇).docx(64页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 勾股定理说课稿范文勾股定理说课稿范文学情分析(十五篇)勾股定理说课稿范文 勾股定理说课稿范文学情分析篇一 勾股定理是学生在已经把握了直角三角形的有关性质的根底上进展学习的,它是直角三角形的一条特别重要的性质,是几何中最重要的定理之一,它提醒了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要依据之一,在实际生活中用途很大,我们的教材在编写时留意培育大家的动手操作力量和分析问题的力量,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比拟,理解勾股定理,以利于正确的进展运用。 据此,制定教学目标如下: 1、理解并且把握勾股定理及其证明。 2、能够
2、敏捷地运用勾股定理及其计算。 3、主要就是培育学生观看、比拟、分析、推理的力量。 4、通过介绍我们中国古代勾股方面的成就,激发学生喜爱祖国与喜爱祖国悠久文化的思想感情,培育他们的民族骄傲感和钻研精神。 教学重点: 勾股定理的证明和应用。 教学难点: 勾股定理的证明。 教法和学法是表达在整个教学过程中的,本课的教法和学法表达如下特点: 1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参加学习全过程。 2、切实表达学生的主体地位,让学生通过观看、分析、争论、操作、归纳,理解定理,提高学生动手操作力量,以及分析问题和解决问题的力量。 3、通过演
3、示实物,引导学生观看、操作、分析、证明,使学生得到获得新知的胜利感受,从而激发学生钻研新知的欲望。 本节内容的教学主要表达在学生动手、动脑方面,依据学生的认知规律和学习心理,教学程序设计如下: (一)创设情境 以古引新 1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,假如勾是3,股是4,那么弦等于5,小学数学教案数学 - 勾股定理说课稿。这样引起学生学习兴趣,激发学生求知欲。 2、是不是全部的直角三角形都有这共性质呢?教师要擅长激疑,使学生进入乐学状态。 3、板书课题,出示学习目标。 (二)初步感知 理解教材 教师指导学生自学教材,通过自学
4、感悟理解新知,表达了学生的自主学习意识,熬炼学生主动探究学问,养成良好的自学习惯。 (三)质疑解难 争论归纳 1、教师设疑或学生提疑。如: 怎样证明勾股定理?学生通过自学,中等以上的学生根本把握,这时能激发学生的表现欲。 2、教师引导学生根据要求进展拼图,观看并分析; (1)这两个图形有什么特点? (2)你能写出这两个图形的面积吗? (3)如何运用勾股定理?是否还有其他形式? 这时教师组织学生分组争论,调动全体学生的积极性,到达人人参加的效果,接着全班沟通。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师准时进展富有启发性的点拨,最终,师生共同归纳,形成全都意见,最终解
5、决疑难。 (四)稳固练习 强化提高 1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲惫。 2、出例如1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次消失稳固练习,进一步提高学生运用学问的力量,对练习中消失的状况可实行互评、互议的形式,在互评互议中消失的具有代表性的问题,教师可以实行全班争论的形式予以解决,以此突出教学重点。 (五)归纳总结 练习反应 引导学生对学问要点进展总结,梳理学习思路。分发自我反应练习,学生独立完成。 本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立公平、民主、和谐的师生关系。加强师生间
6、的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践力量得到培育。 勾股定理说课稿范文 勾股定理说课稿范文学情分析篇二 (一)教材地位 这节课是九年制义务教育初级中学教材北师大版七年级其次章第一节探究勾股定理第一课时,勾股定理是几何中几个重要定理之一,它提醒的是直角三角形中三边的数量关系。它在数学的进展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的根底上对直角三角形有进一步的熟悉和理解。 (二)教学目标 1、学问与力量:把握勾股定理,并能运用勾股定理解决一些简洁实际问题。 2、过程与方法:经受
7、探究及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,进展学生的合情推理意识、主动探究的习惯,感受数形结合和从特别到一般的思想。 3、情感态度与价值观: 激发学生爱国热忱,让学生体验自己努力得到结论的成就感,体验数学布满探究和制造,体验数学的美感,从而了解数学,喜爱数学。 (三)教学重点 经受探究及验证勾股定理的过程,并能用它来解决一些简洁的实际问题。 教学难点:用面积法(拼图法)发觉勾股定理。 突出重点、突破难点的方法:发挥学生的主体作用,通过学生动手试验,让学生在试验中探究、在探究中领悟、在领悟中理解。 学情分析: 七年级学生已经具备肯定的观看、归纳、猜测和推理的力量他们在小学已学习了
8、一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和力量还不够。 另外,学生普遍学习积极性较高,课堂活动参加较主动,但合作沟通的力量还有待加强 教法分析: 结合七年级学生和本节教材的特点,在教学中采纳“问题情境建立模型解释应用拓展稳固”的模式, 选择引导探究法。 把教学过程转化为学生亲身观看,大胆猜测,自主探究,合作沟通,归纳总结的过程。 学法分析:在教师的组织引导下,学生采纳自主探究合作沟通的研讨式学习方式,使学生真正成为学习的仆人。 三、教学过程设计 (一)创设情境,提出问题 (1)图片观赏勾股定理数形图 1955年希腊发行漂亮的勾股树 20xx年国际数学
9、的一枚纪念邮票 大会会标 设计意图:通过图形观赏,感受数学美,感受勾股定理的文化价值。 (2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6。5米长的云梯,假如梯子的底部离墙基的距离是2。5米,请问消防队员能否进入三楼灭火? 设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也表达了学问的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节。 (二)试验操作模型构建 1、等腰直角三角形(数格子) 2、一般直角三角形(割补) 问题一:对于等腰直角三角形,正方形、的面积有何关系? 设计意图:这样做利于学生参加探究,利于培育学生的语
10、言表达力量,体会数形结合的思想。 问题二:对于一般的直角三角形,正方形、的面积也有这个关系吗?(割补法是本节的难点,组织学生合作沟通) 设计意图:不仅有利于突破难点,而且为归纳结论打下根底,让学生的分析问题解决问题的力量在无形中得到提高。 通过以上试验归纳总结勾股定理。 设计意图:学生通过合作沟通,归纳出勾股定理的雏形,培育学生抽象、概括的力量,同时发挥了学生的主体作用,体验了从特别 一般的认知规律。 (三)回归生活应用新知 让学生解决开头情景中的问题,前呼后应,增加学生学数学、用数学的意识,增加学以致用的乐趣和信念。 (四)学问拓展稳固深化 根底题,情境题,探究题。 设计意图:给出一组题目,
11、分三个梯度,由浅入深层层练习,照看学生的个体差异,关注学生的共性进展。学问的运用得到升华。 根底题: 直角三角形的始终角边长为3,斜边为5,另始终角边长为x,你可以依据条件提出多少个数学问题?你能解决所提出的问题吗? 设计意图:这道题立足于双基通过学生自己创设情境 ,熬炼了发散思维。 情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发觉屏幕只有58厘米长和46厘米宽,他觉得肯定是售货员搞错了。你同意他的想法吗? 设计意图:增加学生的生活常识,也表达了数学源于生活,并用于生活。 探究题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木
12、棒能否放入,为什么?试用今日学过的学问说明。 设计意图:探究题的难度相对大了些,但教师利用教学模型和学生合作沟通的方式,拓展学生的思维、进展空间想象力量。 (五)感悟收获布置作业 这节课你的收获是什么? 作业: 1、课本习题2.1 2、搜集有关勾股定理证明的资料。 探究勾股定理 假如直角三角形两直角边分别为a,b,斜边为c,那么 1、探究定理采纳面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特别到一般的思想方法。 2、让学生人人参加,注意对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平。 图文搜集自网络,如有侵权,请联系删除。 铁树教师
13、面试辅导,喜马拉雅app主播教师面试大杂烩 勾股定理说课稿范文 勾股定理说课稿范文学情分析篇三 勾股定理是学生在已经把握了直角三角形的有关性质的根底上进展学习的,它是直角三角形的一条特别重要的性质,是几何中最重要的定理之一,它提醒了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时留意培育学生的动手操作力量和分析问题的力量,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比拟,理解勾股定理,以利于正确的进展运用。 据此,制定教学目标如下: 1、理解并把握勾股定理及其证明。 2、能够敏捷地运用勾股定理及
14、其计算。 3、培育学生观看、比拟、分析、推理的力量。 4、通过介绍中国古代勾股方面的成就,激发学生喜爱祖国与喜爱祖国悠久文化的思想感情,培育他们的民族骄傲感和钻研精神。 教学重点:勾股定理的证明和应用。 教学难点:勾股定理的证明。 教法和学法是表达在整个教学过程中的,本课的教法和学法表达如下特点: 1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参加学习全过程。 2、切实表达学生的主体地位,让学生通过观看、分析、争论、操作、归纳,理解定理,提高学生动手操作力量,以及分析问题和解决问题的力量。 3、通过演示实物,引导学生观看、操作、分析、证
15、明,使学生得到获得新知的胜利感受,从而激发学生钻研新知的欲望。 本节内容的教学主要表达在学生动手、动脑方面,依据学生的认知规律和学习心理,教学程序设计如下: (一)创设情境 以古引新 1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形。假如勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。 2、是不是全部的直角三角形都有这共性质呢?教师要擅长激疑,使学生进入乐学状态。 3、板书课题,出示学习目标。 (二)初步感知 理解教材 教师指导学生自学教材,通过自学感悟理解新知。表达了学生的自主学习意识,熬炼学生主动探究学问,养成良好的自
16、学习惯。 (三)质疑解难 争论归纳 1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生根本把握,这时能激发学生的表现欲。 2、教师引导学生根据要求进展拼图,观看并分析; (1)这两个图形有什么特点? (2)你能写出这两个图形的面积吗? (3)如何运用勾股定理?是否还有其他形式? 这时教师组织学生分组争论,调动全体学生的积极性,到达人人参加的效果,接着全班沟通;先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师准时进展富有启发性的点拨。最终,师生共同归纳,形成全都意见,最终解决疑难。 (四)稳固练习 强化提高 1、出示练习,学生分组解答,并由学生总结
17、解题规律。课堂教学中动静结合,以免引起学生的疲惫。 2、出例如1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次消失稳固练习,进一步提高学生运用学问的力量,对练习中消失的状况可实行互评、互议的形式,在互评互议中消失的具有代表性的问题,教师可以实行全班争论的形式予以解决,以此突出教学重点。 (五)归纳总结 练习反应 引导学生对学问要点进展总结,梳理学习思路。分发自我反应练习,学生独立完成。 本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立公平、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极
18、主动地教学活动,在学习中创新精神和实践力量得到培育。 勾股定理说课稿范文 勾股定理说课稿范文学情分析篇四 敬重的各位考官: 大家好,我是x号考生,今日我说课的题目是勾股定理的逆定理。 新课标指出:数学课程要面对全体学生,适应学生共性进展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的进展。今日我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面绽开我的说课。 首先来谈一谈我对教材的理解。 本节课选自人教版初中数学八年级下册第十七章其次节勾股定理的逆定理,它是在学生把握勾股定理及一般三角形性质的根底上进展教学的。应用前面学习的勾股定理及三角形全等证明逆定理是本节课的关键
19、步骤,同时本节课又丰富了三角形的性质,是后面几何问题的根底理论性学问。 接下来谈谈学生的实际状况。本阶段的学生已经把握了肯定的根底学问,处于由几何内容的初级向高级行进的过程。他们的几何思维正在逐步形成和进展,对几何题目具有肯定的分析、想象、概括力量,具有对未知事物的新奇感和探求欲。同时也要留意到学生力量的不成熟,教学中鼓舞与引导并重。 依据以上对教材的分析以及对学情的把握,我制定了如下教学目标: (一)学问与技能 理解并把握勾股定理的逆定理,会应用定理判定直角三角形;理解勾股定理与勾股定理逆定理的区分与联系;理解原命题和逆命题的概念,知道二者的关系及二者真假性的关系。 (二)过程与方法 经受得
20、出猜测、推理证明的过程,提升自主探究、分析问题、解决问题的力量。 (三)情感、态度与价值观 体会事物之间的联系,感受几何的魅力。 在教学目标的实现过程中,教学重点是勾股定理的逆定理及其证明,教学难点是勾股定理的逆定理的证明。 为了突破重点,解决难点,顺当达成教学目标,教学中我将主要采纳小组争论、自主探究的教学方法,辅以适量的教师讲解和引导,把课堂还给学生。 下面我将重点谈谈我对教学过程的设计。 (一)导入新课 课堂伊始,我采纳复习旧知与创设情境相结合的导入方式。首先我会带着学生复习勾股定理并明确其题设和结论,为后面提出逆命题、逆定理做铺垫。接着提问学生如何画直角三角形,学生很简单想到用三角尺或
21、量角器。此时我会要求学生不能用绳子以外的工具,借助学生的困惑,给出古埃及人利用等长的3、4、5个绳结间距画直角三角形的情境。以古埃及人所用方法中蕴含何道理为切入点引出课题。 通过这样的导入方式,能够带着学生回忆上节课的内容,为本节课奠定好根底,同时用情境激发学生的奇怪心和求知欲,更好地绽开教学。 (二)讲解新知 接下来是最重要的新授环节。 请学生思索3,4,5之间的关系,结合勾股定理的学习阅历明确 出示数据2.5cm,6cm,6.5cm,请学生计算验证数据满意上述平方和关系,并画出相应边长的三角形检验是否为直角三角形。 学生活动:同桌两人一组,将三边换成其他满意上述平方和关系的数据,如4cm,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 说课稿 范文 情分 十五
限制150内