223独立重复试验与二项分布12(二).ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《223独立重复试验与二项分布12(二).ppt》由会员分享,可在线阅读,更多相关《223独立重复试验与二项分布12(二).ppt(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.2.3独立重复试验独立重复试验与二项分布(二)与二项分布(二)高二数学高二数学 选修选修2-3复习引入复习引入独立重复试验的特点:独立重复试验的特点:1)每次试验只有两种结果,要么发生,要么不发生;)每次试验只有两种结果,要么发生,要么不发生;2)任何一次试验中,)任何一次试验中,A事件发生的概率相同,即相事件发生的概率相同,即相互独立,互不影响试验的结果。互独立,互不影响试验的结果。2、二项分布:、二项分布:一般地,在一般地,在n次独立重复试验中,设事件次独立重复试验中,设事件A发生的发生的次数为次数为X,在每次试验中事件,在每次试验中事件A发生的概率为发生的概率为p,那么,那么在在n次
2、独立重复试验中,事件次独立重复试验中,事件A恰好发生恰好发生k次的概率为次的概率为 此时称随机变量此时称随机变量X服从服从二项分布二项分布,记作,记作XB(n,p),并称并称p为成功概率。为成功概率。注注:展开式中的第展开式中的第 项项.例例1假定人在一年假定人在一年365天中的任一天出生的概率是一天中的任一天出生的概率是一 样的,某班级有样的,某班级有50名同学,其中有两个以上的同名同学,其中有两个以上的同 学生于元旦的概率是多少?(保留四位小数)学生于元旦的概率是多少?(保留四位小数)运用运用n次独立重复试验模型解题次独立重复试验模型解题变式引申变式引申 某人参加一次考试,若某人参加一次考
3、试,若5道题中解对道题中解对4道则为及道则为及格,已知他解一道题的正确率为格,已知他解一道题的正确率为0.6,是求他能及格是求他能及格的概率。的概率。例例2(05,北京)甲乙两人各进行,北京)甲乙两人各进行3次射击,甲每次击中目次射击,甲每次击中目 标的概率为标的概率为 ,乙每次击中目标的概率为,乙每次击中目标的概率为 ,求:,求:(1)甲恰好击中目标)甲恰好击中目标2次的概率;次的概率;(2)乙至少击中目标)乙至少击中目标2次的概率;次的概率;(3)乙恰好比甲多击中目标)乙恰好比甲多击中目标2次的概率;次的概率;(4)甲、乙两人共击中)甲、乙两人共击中5次的概率。次的概率。练:练:甲、乙两个
4、篮球远动员投篮命中率分别为甲、乙两个篮球远动员投篮命中率分别为0.7和和0.6,每,每 人投篮人投篮3次,求:次,求:(1)二人进球数相同的概率;)二人进球数相同的概率;(2)甲比乙进球多的概率。)甲比乙进球多的概率。例例3某会议室用某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型盏灯照明,每盏灯各使用灯泡一只,且型号相同。假定每盏灯能否正常照明只与灯泡的寿命有关,该号相同。假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡的寿命为型号的灯泡的寿命为1年以上的概率为年以上的概率为 ,寿命为,寿命为2年以上年以上的概率为的概率为 。从使用之日起每满年进行一次灯泡更换工作,。从使用之日起每满年
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 223 独立 重复 试验 二项分布 12
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内