(完整word版)高中数学必修二直线与方程经典(word文档良心出品).pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《(完整word版)高中数学必修二直线与方程经典(word文档良心出品).pdf》由会员分享,可在线阅读,更多相关《(完整word版)高中数学必修二直线与方程经典(word文档良心出品).pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学必修2 知识点直线与方程一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0 度。因此,倾斜角的取值范围是0 180(2)直线的斜率定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用 k 表示。即0tan(90)k。斜率反映直线与x 轴的倾斜程度。当90,0时,0k;当180,90时,0k;当90时,k不存在。过两点的直线的斜率公式:)(211212xxxxyyk注意下面四点:(1)当21xx时,公式右边无意义,直线的斜率不存在,倾斜角为90;(2)k与P1、P2的顺
2、序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。例.如右图,直线l1的倾斜角=30,直线l1l2,求直线l1和 l2的斜率.解:k1=tan30=33l1l2 k1k2=1 k2=3例:直线053yx的倾斜角是()A.120B.150C.60D.30(3)直线方程点斜式:)(11xxkyy直线斜率k,且过点11,yx注意:当直线的斜率为0时,k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。斜截式:bkxy,直线斜率为k
3、,直线在y轴上的截距为b两点式:112121yyxxyyxx(1212,xxyy)即不包含于平行于x 轴或 y 直线两点轴的直线,直线两点11,yx,22,yx,当写成211211()()()()xxyyyyxx的形式时,方程可以表示任何一条直线。截矩式:1xyab其中直线l与x轴交于点(,0)a,与y轴交于点(0,)b,即l与x轴、y轴的截距分别为,a b。对于平行于坐标轴或者过原点的方程不能用截距式。一般式:0CByAx(A,B不全为 0)注意:1各式的适用范围2特殊的方程如:平行于x轴的直线:by(b为常数);平行于y轴的直线:ax(a为常数);例题:根据下列各条件写出直线的方程,并且化
4、成一般式:(1)斜率是12,经过点A(8,2);.(2)经过点 B(4,2),平行于x 轴;.x y o 12l1l2(3)在x轴和y轴上的截距分别是3,32;.4)经过两点P1(3,2)、P2(5,4);.例 1:直线l的方程为Ax+By+C=0,若直线经过原点且位于第二、四象限,则()AC=0,B0 BC=0,B0,A0 C C=0,AB0 例 2:直线l的方程为Ax ByC=0,若 A、B、C 满足 AB.0 且 BC0,则 l 直线不经的象限是()A第一B第二C第三D第四(4)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线0000CyBxA(00,BA是不全为0 的
5、常数)的直线系:000CyBxA(C为常数)(二)过定点的直线系()斜率为k的直线系:00yyk x x,直线过定点00,yx;()过两条直线0:1111CyBxAl,0:2222CyBxAl的交点的直线系方程为0222111CyBxACyBxA(为参数),其中直线2l不在直线系中。(三)垂直直线系垂直于已知直线0AxByC(,A B是不全为0 的常数)的直线系:0BxAyC例 1:直线 l:(2m+1)x+(m+1)y7m4=0所经过的定点为。(mR)(5)两直线平行与垂直当111:bxkyl,222:bxkyl时,(1)212121,/bbkkll;(2)12121kkll注意:利用斜率判
6、断直线的平行与垂直时,要注意斜率的存在与否。(3)1212,kkbb1l与2l重合;(4)12kk1l与2l相交。另 外 一 种 形 式:一 般 的,当1111110:0(,)lAxB yCA B不全为,与2222220:0(,)lA xB yCAB 不全为时,(1)122112210/120A BA BllB CB C,或者1221122100ABA BACA C。(2)1212120llA AB B。(3)1l与2l重合1221A BA B=1221B CB C=1221ACA C=0。(4)1l与2l相交12210A BA B。例.设直线l1经过点 A(m,1)、B(3,4),直线l2经
7、过点 C(1,m)、D(1,m+1),当(1)l1/l2(2)l1l1时分别求出m 的值文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4
8、B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U
9、4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2
10、U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T
11、2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10
12、T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D1
13、0T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D10T2U4B7文档编码:CP1L3M1H5V8 HN1X10W5D4T9 ZG10D
14、10T2U4B7例 1.已知两直线l1:x+(1+m)y=2 m 和 l2:2mx+4y+16=0,m 为何值时l1与 l2相交平行例 2.已知两直线l1:(3a+2)x+(14a)y+8=0 和 l2:(5a2)x+(a+4)y7=0 垂直,求a值(6)两条直线的交点0:1111CyBxAl0:2222CyBxAl相交交点坐标即方程组00222111CyBxACyBxA的一组解。方程组无解21/ll;方程组有无数解1l与2l重合例 3.求两条垂直直线l1:2x+y+2=0 和 l2:mx+4y2=0 的交点坐标例 4.已知直线l 的方程为121xy,(1)求过点(2,3)且垂直于l 的直线方
15、程;(2)求过点(2,3)且平行于l 的直线方程。例 2:求满足下列条件的直线方程(1)经过点 P(2,3)及两条直线l1:x+3y4=0 和 l2:5x+2y+1=0 的交点 Q;(2)经过两条直线l1:2x+y8=0和 l2:x2y+1=0 的交点且与直线4x3y7=0 平行;(3)经过两条直线l1:2x3y+10=0 和 l2:3x+4y2=0 的交点且与直线3x2y+4=0 垂直;(7)两点间距离公式:设1122(,),A xyB xy,()是平面直角坐标系中的两个点,则222121|()()ABxxyy(8)点 到 直 线 距 离 公 式:一 点00,yxP到 直 线1:0lAx B
16、y C的 距 离2200BACByAxd(9)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解。对于0:1111CyBxAl0:2222CyBxAl来说:1222CCdAB。例 1:求平行线l1:3x+4y 12=0 与 l2:ax+8y+11=0 之间的距离。例 2:已知平行线l1:3x+2y 6=0 与 l2:6x+4y3=0,求与它们距离相等的平行线方程。(10)对称问题1)中心对称 A、若点11(,)Mx y及(,)N x y关于(,)P a b对称,则由中点坐标公式得112,2.xaxyby B、直线关于点的对称,主要方法是:在已知直线上取两点,利用中点坐标公式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 高中数学 必修 直线 方程 经典 文档 良心 出品
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内