(完整word版)高中数学必修4平面向量知识点总结与典型例题归纳(word文档良心出品).pdf
《(完整word版)高中数学必修4平面向量知识点总结与典型例题归纳(word文档良心出品).pdf》由会员分享,可在线阅读,更多相关《(完整word版)高中数学必修4平面向量知识点总结与典型例题归纳(word文档良心出品).pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 平面向量【基本概念与公式】【任何时候写向量时都要带箭头】1.向量:既有大小又有方向的量。记作:AB或a。2.向量的模:向量的大小(或长度),记作:|AB或|a。3.单位向量:长度为 1 的向量。若e是单位向量,则|1e。4.零向量:长度为0 的向量。记作:0。【0方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。6.相等向量:长度和方向都相同的向量。7.相反向量:长度相等,方向相反的向量。ABBA。8.三角形法则:ABBCAC;ABBCCDDEAE;ABACCB(指向被减数)9.平行四边形法则:以,a b为临边的平行四边形的两条对角线分别为ab,ab。10.共
2、线定理:/abab。当0时,ab与同向;当0时,ab与反向。11.基底:任意不共线的两个向量称为一组基底。12.向量的模:若(,)ax y,则22|axy,22|aa,2|()abab13.数量积与夹角公式:|cosa bab;cos|a bab14.平行与垂直:1221/ababx yx y;121200aba bx xy y题型 1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。(2)若两个向量不相等,则它们的终点不可能是同一点。(3)与已知向量共线的单位向量是唯一的。(4)四边形 ABCD 是平行四边形的条件是ABCD。(5)若ABCD,则 A、B、C、D四点构成平行四边形。
3、(6)若a与b共线,b与c共线,则a与c共线。(7)若mamb,则ab。2(8)若mana,则mn。(9)若a与b不共线,则a与b都不是零向量。(10)若|a bab,则/ab。(11)若|abab,则ab。题型 2.向量的加减运算1.设a表示“向东走8km”,b表示“向北走6km”,则|ab。2.化简()()ABMBBOBCOM。3.已知|5OA,|3OB,则|AB的最大值和最小值分别为、。4.已知ACABAD为与的和向量,且,ACa BDb,则AB,AD。5.已知点 C在线段 AB上,且35ACAB,则ACBC,ABBC。题型 3.向量的数乘运算1.计算:2(253)3(232)abcab
4、c2.已知(1,4),(3,8)ab,则132ab。题型 4.根据图形由已知向量求未知向量1.已知在ABC中,D是BC的中点,请用向量AB AC,表示AD。2.在平行四边形ABCD中,已知,ACa BDb,求ABAD和。题型 5.向量的坐标运算1.已知(4,5)AB,(2,3)A,则点B的坐标是。2.已知(3,5)PQ,(3,7)P,则点Q的坐标是。3.若物体受三个力1(1,2)F,2(2,3)F,3(1,4)F,则合力的坐标为。4.已知(3,4)a,(5,2)b,求ab,ab,32ab。5.已知(1,2),(3,2)AB,向量(2,32)axxy与AB相等,求,x y的值。文档编码:CS8H
5、10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7
6、T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9
7、H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9
8、Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3
9、F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F
10、9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编
11、码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L63 6.已知(2,3)AB,(,)BCm n,(1,4)CD,则DA。7.已知O是坐标原点,(2,1),(4,8)AB,且30ABBC,求OC的坐标。题型 6.判断两个向量能否作为一组基
12、底1.已知12,e e是平面内的一组基底,判断下列每组向量是否能构成一组基底:A.1212eeee和 B.1221326eeee和4 C.122133eeee和 D.221eee和2.已知(3,4)a,能与a构成基底的是()A.3 4(,)5 5 B.4 3(,)5 5 C.34(,)55 D.4(1,)3题型 7.结合三角函数求向量坐标1.已知O是坐标原点,点A在第二象限,|2OA,150 xOA,求OA的坐标。2.已知O是原点,点A在第一象限,|4 3OA,60 xOA,求OA的坐标。题型 8.求数量积1.已知|3,|4ab,且a与b的夹角为60,求(1)a b,(2)()aab,(3)1
13、()2abb,(4)(2)(3)abab。2.已知(2,6),(8,10)ab,求(1)|,|ab,(2)a b,(3)(2)aab,(4)(2)(3)abab。题型 9.求向量的夹角1.已知|8,|3ab,12a b,求a与b的夹角。文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M
14、7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK
15、9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S
16、9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ
17、3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10
18、F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档
19、编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8
20、H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L64 2.已知(3,1),(2 3,2)ab,求a与b的夹角。3.已知(1,0)A,(0,1)B,(2,5)C,求cosBAC。题型 10.求向量的模1.已知|3,|4ab,且a与b的夹角为60,求(1)|ab,(2)|23|ab。2.已知(2,6),(8,10)ab,求(1)|,|ab,(5)|ab,(6)1|2ab。3.已知|1|2ab,|32|3ab,求|3|ab。题型 11.求单位向量【与a平行的单位向量:|aea】1.与(12,5)a平行的单位向量是 2.与1(1,)2m平行的单位向量是。题型 12.向量的平行与垂直1
21、.已知(1,2)a,(3,2)b,(1)k为何值时,向量kab与3ab垂直?(2)k为何值时向量kab与3ab平行?2.已知a是非零向量,a ba c,且bc,求证:()abc。题型 13.三点共线问题文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 ZZ3F6N10F9L6文档编码:CS8H10P3M7T3 HK9H9J3S9Y3 Z
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 高中数学 必修 平面 向量 知识点 总结 典型 例题 归纳 文档 良心 出品
限制150内