浙江省绍兴市新昌县2019-2020学年九年级上学期期末数学试题.pdf
《浙江省绍兴市新昌县2019-2020学年九年级上学期期末数学试题.pdf》由会员分享,可在线阅读,更多相关《浙江省绍兴市新昌县2019-2020学年九年级上学期期末数学试题.pdf(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、试卷第 1 页,总 6 页浙江省绍兴市新昌县2019-2020 学年九年级上学期期末数学试题注意事项:1答题前填写好自己的姓名、班级、考号等信息2请将答案正确填写在答题卡上第 I 卷(选择题)请点击修改第I 卷的文字说明评卷人得分一、单选题1二次函数2(2)6yx图象的顶点坐标是()A(2,6)B()2,6C(2,6)D(2,6)2一个布袋里装有3 个红球、2 个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是红球的概率是()A15B25C35D233已知 O 的半径为 3,直线 l 与 O 相交,则圆心O 到直线 l 的距离 d 的取值范围是()Ad3 Bd3 C0 d3 Dd3
2、 4在 ABC 中,C90,AC 8,BC6,则 sinB 的值是()A45B35C43D345如图,O 的直径 CDAB,AOC=50,则 CDB 大小为()A25B30C40D506如图,在ABC 中,EGBC,若13EGBC,则AFAD的值为()试卷第 2 页,总 6 页A12B23C14D137把抛物线y=2x2+4x+1 的图象向左平移2 个单位,再向上平移3个单位,所得的抛物线的函数关系式是()Ay=2(x1)2+6 By=2(x1)26 Cy=2(x+1)2+6 Dy=2(x+1)26 8如图,OT 是 RtABO 的斜边 AB 上的高线,OAOB,以 O 为圆心,OT 为半径的
3、圆交 OA 于点 D,过点 D 作 O 的切线 CD,交 AB 于点 C,已知 OT2,则 BC 的长为()A2 B22C3 D2+29 在平面直角坐标系中,把点 P(3,4)绕原点旋转90 得到点 P1,则点 P1的坐标是()A(4,3)B()3,4C()3,4或(3,4)D(4,3)或(4,3)10如图,在平面直角坐标系中,正方形OABC 的边长为4,把它内部及边上的横、纵坐标均为整数的点称为整点,点 P为抛物线2()2yxmm的顶点(m 为整数),当点 P 在正方形 OABC 内部或边上时,抛物线下方(包括边界)的整点最少有()A3 个B5个C10 个D15 个试卷第 3 页,总 6 页
4、第 II 卷(非选择题)请点击修改第II 卷的文字说明评卷人得分二、填空题11如果 2a=3b,那么ab_12如图,为了美化校园,学校在一块靠墙角的空地上建造了一个扇形花圃,扇形的圆心角 AOB120,半径为9m,则扇形的弧长是_m13小李与小陈做猜拳游戏,规定每人每次出一只手,且至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么 _(填“小李”或“小陈”)获胜的可能性较大14如图,在圆内接四边形ABCD 中,C2A,则 cosA_15抛物线 yax2+c(a0)与直线 y6 相交于点A,B,与 y 轴交于点C(0,2),且 ACB 为直角,当y0 时,自变量x 的取值范围是_16如
5、图,在矩形ABCD 中,AB6,AD8,点 M,N 分别为 AD,AC 上的动点(不含端点),ANDM,连结点M 与矩形的一个顶点,以该线段为直径作O,当点 N 和矩形的另一个顶点也在O 上时,线段DM 的长为 _试卷第 4 页,总 6 页评卷人得分三、解答题17计算:(1)4sin260 2+tan45;(2)已知线段a2,b8,求 a,b 的比例中项线段18如图,在RtABC 中,C 90(1)请用直尺和圆规作出RtABC的外接圆,圆心为O(保留作图痕迹,不要求写作法);(2)若 AB6,A30,请求出扇形AOC 的面积19某商场开业,为了活跃气氛,用红、黄、蓝三色均分的转盘设计了两种抽奖
6、方案,凡来商场消费的顾客都可以选择一种抽奖方案进行抽奖方案一:转动转盘一次,指针落在红色区域可领取一份奖品;方案二:转动转盘两次,指针落在不同颜色区域可领取一份奖品,你会选择哪个方案?请用相关的数学知识说明理由20如图,某次台风来袭时,垂直于地面的大树AB被刮倾斜30 后,折断倒在地上,树的顶部恰好落在地面上点D 处,大树被折断部分和地面所成的角ADC45,AD4 米,求这棵大树AB 原来的高度是多少米?(结果精确到个位,参考数据:21.4,31.7,62.4)21在 ABC 中,AB6,BC5,AC4,D 是线段 AB 上一点,且DB4,过点 D试卷第 5 页,总 6 页作 DE 与线段 A
7、C 相交于点E,使以 A,D,E 为顶点的三角形与ABC 相似,求 DE 的长请根据下列两位同学的交流回答问题:(1)写出正确的比例式及后续解答;(2)指出另一个错误,并给予正确解答22定义:同时经过x 轴上两点A(,0)m,B(,0)n(m n)的两条抛物线称为同弦抛物线如抛物线C1:(1)(3)yxx与抛物线C2:2(1)(3)yxx是都经过(1,0),(3,0)的同弦抛物线(1)引进一个字母,表达出抛物线C1的所有同弦抛物线;(2)判断抛物线C3:213122yxx与抛物线C1是否为同弦抛物线,并说明理由;(3)已知抛物线C4是 C1的同弦抛物线,且过点(4,5),求抛物线 C 对应函数
8、的最大值或最小值23如图,AB 是 O 的直径,D 是 O 上一点,DEAB 于点 E,且 ADE 60,C 是?ABD上一点,连结AC,CD(1)求 ACD 的度数;(2)证明:AD2AB?AE;(3)如果 AB8,ADC45,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分)试卷第 6 页,总 6 页24如图 1 是一块内置量角器的等腰直角三角板,它是一个轴对称图形已知量角器所在的半圆O 的直径 DE 与 AB 之间的距离为1,DE4,AB8,点 N 为半圆 O 上的一个动点,连结AN 交半圆或直径DE 于点 M(1)当 AN 经过圆心O 时,求 AN
9、 的长;(2)如图 2,若 N 为量角器上表示刻度为90 的点,求 MON 的周长;(3)当12AMAN时,求 MON 的面积答案第 1 页,总 20 页参考答案1B【解析】【分析】根据题目中二次函数的顶点式,可以直接写出该函数的顶点坐标【详解】二次函数y=(x+2)2+6,该函数的顶点坐标为(2,6),故选:B【点睛】本题主要考查了二次函数的性质,关键是熟记:抛物线2ya(xh)k的顶点坐标是hk,对称轴是hx2C【解析】试题分析:袋中共有球5 个,红球为3 个,摸出的球是红球的概率是,故选 C.考点:概率的计算.3C【解析】【分析】根据直线l 和 O 相交?dr,即可判断【详解】O 的半径
10、为 3,直线 l 与 O 相交,圆心 D 到直线 l 的距离 d 的取值范围是0 d3,故选:C【点睛】本题主要考查直线与圆的位置关系,解题的关键是记住直线l 和 O 相交?d r直线 l和 O 相切?d=r直线 l 和 O 相离?d r4A 答案第 2 页,总 20 页【解析】【分析】先根据勾股定理计算出斜边AB 的长,然后根据正弦的定义求解【详解】如图,C=90,AC=8,BC=6,AB=222268BCAC=10,sinB=84105ACAB故选:A【点睛】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值也考查了勾股定理5A【解析】由垂径定理,得:?ACBC;C
11、DB=AOC=25 ;故选 A6D【解析】【分析】通过证明 AEG ABC,AEF ABD,可得13AFEGADBC,即可求解【详解】EGBC,AEG ABC,AEF ABD,答案第 3 页,总 20 页EGAEBCAB,AFAEADAB,13AFEGADBC,故选:D【点睛】本题考查了相似三角形的判定和性质,利用相似三角形的性质解决问题是本题的关键7C【解析】抛物线y=2(x1)2+3的顶点坐标为(1,3),向左平移2 个单位,再向上平移3 个单位后的顶点坐标是(1,6)所得抛物线解析式是y=2(x+1)2+6故选 C 点睛:本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶
12、点式y=a(x-h)2+k,确定其顶点坐标(h,k),在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”8B【解析】【分析】由等腰直角三角形的性质可得OA=OB=22,AB=4,可得 AD=22 2,在RtACDn中,求得4 2 2AC,可求解【详解】OA=OB,AOB=90,OT AB,OT=AT=BT=2,A=B=45,OA=OB=22,AB=4,AD=222,CD 是 O 切线,CDAO,在RtACDn中,ADC=90,A=45,AD=222,答案第 4 页,总 20 页22 2 2 24 2 2ACAD,BC=BAAC=22,故选:B【点睛】本题考查了切线的性质,等腰直角
13、三角形的性质,灵活运用这些性质进行推理是本题的关键9D【解析】【分析】作 PQx 轴于点 Q,则 OQ=3,PQ=4,于是把点旋转的问题转化为直角三角形旋转的问题,讨论:当把OPQ 绕原点逆时针旋转90 得到 O11PQ,根据旋转的性质得11PQ=PQ=4,O1Q=OQ=3,所以1P(-4,3),当把 OPQ 绕原点顺时针旋转90 得到 O22PQ,同样方法易得2P(4,-3)【详解】作 PQx 轴于点 Q,则 OQ=3,PQ=4,当把 OPQ绕原点逆时针旋转90得到 O11PQ,则11PQ=PQ=4,O1Q=OQ=3,所以1P(-4,3),当把 OPQ绕原点顺时针旋转90得到 O22PQ,同
14、样方法可得2P(4,-3),综上,点P 点 P(3,4)绕原点旋转90 得到点 P1(4,3),P2(4,3)故选:D答案第 5 页,总 20 页【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标10 B【解析】【分析】根据题意,可以得到当点P在正方形OABC 内部或边上时,抛物线下方(包括边界)的整点最少 m的值,从而可以得到最少时点的坐标,进而得到最少时有几个点【详解】点 P 为抛物线y=(xm)2+m+2 的顶点(m为整数),点 P 的坐标为(m,m+2),又点 P 在正方形OABC 内部或边上,当 m=0 时,抛物线y=x2+
15、2,此时抛物线下方(包括边界)的整点最少,当 x=1 时,y=1,当 x=2 时,y=2,正方形OABC 的边长为4,把它内部及边上的横、纵坐标均为整数的点称为整点,当 m=0 时,抛物线y=x2+2 下方(包括边界)的整点有:(0,2),(0,1),(0,0),(1,0),(1,1),即当点 P 在正方形OABC 内部或边上时,抛物线下方(包括边界)的整点最少有5 个,故选:B【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征、正方形的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答1132【解析】【分析】答案第 6 页,总 20 页根据比例的基本性质即可得到a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江省 绍兴市 新昌县 2019 2020 学年 九年级 学期 期末 数学试题
限制150内