《高中数学苏教版选修2-3:课下能力提升(十八)独立性检验.pdf》由会员分享,可在线阅读,更多相关《高中数学苏教版选修2-3:课下能力提升(十八)独立性检验.pdf(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、课下能力提升(十八)独立性检验一、填空题1在一项打鼾与患心脏病的调查中,共调查了1 671 人,经过计算227.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是_的(有关,无关)2若两个研究对象X 和 Y 的列联表为:y1y2x1515 x24010 则 X 与 Y 之间有关系的概率约为_3 在吸烟与患肺病这两个对象的独立性检验的计算中,下列说法正确的是_(填序号)若 26.635,则我们认为有99%的把握认为吸烟与患肺病有关系那么在100 个吸烟的人中必有99 人患肺病从独立性检验的计算中求有99%的把握认为吸烟与患肺病有关系时,我们认为如果某人吸烟,那么他有99%的可能患肺病若从统计
2、量中求出有95%的把握认为吸烟与患肺病有关系,是指有 5%的可能性使得推断出现错误以上三种说法都不正确4调查者询问了72 名男女大学生在购买食品时是否观看营养说明得到如下22 列联表:看营养说明不看营养说明总计男大学生28836 女大学生162036 总计442872 从表中数据分析大学生的性别与看不看营养说明之间的关系是_(填“有关”或“无关”)5有人发现,多看电视容易使人变冷漠,下表是一个调查机构对此现象的调查结果:冷漠不冷漠合计多看电视6842110 少看电视203858 合计8880168 则由表可知大约有_的把握认为多看电视与人变冷漠有关系二、解答题6为研究学生的数学成绩与对学习数学
3、的兴趣是否有关,对某年级学生作调查,得到如下数据:成绩优秀成绩较差合计兴趣浓厚的643094 兴趣不浓厚的227395 合计86103189 学生的数学成绩好坏与对学习数学的兴趣是否有关?7考察小麦种子经过灭菌与否跟发生黑穗病的关系,经试验观察,得到数据如下列联表.种子灭菌种子未灭菌合计有黑穗病26184210 无黑穗病50200250 合计76384460 试按照原试验目的作统计推断8为了调查某生产线上质量监督员甲是否在生产现场对产品质量好坏有无影响,现统计数据如下:甲在生产现场时,990 件产品中有合格品982 件,次品 8 件;甲不在生产现场时,510 件产品中有合格品493 件,次品1
4、7 件试用独立性检验的方法分析监督员甲是否在生产现场对产品质量好坏有无影响答案1解析:由 2值可判断有关答案:有关2解析:因为2(5 154010)(5 104015)2(5 15)(4010)(540)(15 10)18.8,查表知P(210.828)0.001.答案:99.9%3解析:由独立性检验的意义可知,正确答案:4解析:提出假设 H0:大学生的性别与看不看营养说明无关,由题目中的数据可计算272(2820168)2442836368.42,因为当H0成立时,P(27.879)0.005,这里的28.427.879,所以我们有99.5%的把握认为大学生的性别与看不看营养说明有关答案:有
5、关5解析:由公式得2168(68384220)211058888011.37710.828,所以我们有99.9%的把握说,多看电视与人变冷漠有关答案:99.9%6解析:提出假设H0:学生数学成绩的好坏与对学习数学的兴趣无关由公式得 2的值为2189(64 732230)286103959438.459.当 H0成立时,210.828 的概率约为0.001,而这里 238.45910.828,有 99.9%的把握认为学生数学成绩的好坏与对学习数学的兴趣是有关的7解:提出假设 H0:种子是否灭菌与有无黑穗病无关由公式得,2460(2620018450)2210250763844.804.由于 4.8043.841,即当 H0成立时,23.841 的概率约为0.05,所以我们有95%的把握认为种子是否灭菌与有无黑穗病是有关系的8解:22 列联表如下合格品数次品数合计甲在生产现场9828990甲不在生产现场49317510合计1 475251 500 提出假设 H0:质量监督员甲是否在生产现场与产品质量的好坏无明显关系根据 2公式得21 500(982174938)2990510 1 4752513.097.因为 H0成立时,210.828 的概率约为0.001,而这里 213.09710.828,所以有 99.9%的把握认为质量监督员甲是否在生产现场与产品质量的好坏有关系
限制150内