2019年部编版小学六年级数学上册知识点归纳汇总.pdf
《2019年部编版小学六年级数学上册知识点归纳汇总.pdf》由会员分享,可在线阅读,更多相关《2019年部编版小学六年级数学上册知识点归纳汇总.pdf(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 2019 年部编版小学六年级数学上册知识点归纳汇总2 温馨提示:同学们,一个学期的学习已经结束,你记住咱们本学期学习的东西了吗?让我们一起来回顾下我们这学期各单元重要知识点吧!最后,祝各位同学们在期末的考试里取得好成绩。第一单元分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。例如:655 表示求5 个 65 的和是多少?1/35 表示求5 个 1/3 的和是多少?2、一个数乘分数的意义是求一个数的几分之几是多少。例如:1/3 4/7表示求1/3 的 4/7 是多少。4 3/8 表示求4 的 3/8 是多少.(二)、分数乘法的计
2、算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。3、为了计算简便,能约分的要先约分,再计算。(尽量约分,不会约分的就不约,常考的质因数有11 11=121;13 13=169;1717=289;19 19=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。X|k|B|1.c|O|m(三)、乘法中比较大小的规律一个数(0 除外)乘大于1 的数,积大于这个数。一个数(0 除外)乘小于1 的数
3、(0 除外),积小于这个数。一个数(0 除外)乘 1,积等于这个数。(四)、分数混合运算的运算顺序和整数的运算顺序相同。整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。乘法交换律:a b=b a 乘法结合律:(a b)c=a (b c)乘法分配律:(a+b)c=a c+b c 二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。(2)部分和整体的关系:画一条线段图。2、找单位“1”:单位“1”在分率句中分率的前面;或在“占”、“是”、“比”“相当于”的后面。3、
4、写数量关系式的技巧:(1)“的”相当于“”,“占”、“相当于”“是”、“比”是“=”3(2)分率前是“的”字:用单位“1”的量分率=具体量例如:甲数是20,甲数的1/3 是多少?列式是:20 1/3 4、看分率前有没有多或少的问题;分率前是“多或少”的关系式:(比少):单位“1”的量(1-分率)=具体量;例如:甲数是50,乙数比甲数少1/2,乙数是多少?列式是:50(1-1/2)(比多):单位“1”的量(1+分率)=具体量例如:小红有30 元钱,小明比小红多3/5,小红有多少钱?列式是:50(1+3/5)3、求一个数的几倍是多少:用一个数几倍;4、求一个数的几分之几是多少:用一个数几分之几。5
5、、求几个几分之几是多少:用几分之几个数6、求已知一个部分量是总量的几分之几,求另一个部分量的方法:(1)、单位“1”的量(1-分率)=另一个部分量(建议用)(2)、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量例如:教材 15 页做一做和16 页练习第七题(题目中有时候会有这种题的关键字“其中”)w W w .b 1.c O m第二单元位置与方向(二)一、确定物体位置的方法:1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺)二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。三、位置关系的相对性:1、两地的位置具有相对性在叙述两地的位置关
6、系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。四、相对位置:东-西;南-北;南偏东-北偏西。第三单元分数除法三、倒数1、倒数的意义:乘积是1 的两个数互为倒数。强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是1 的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。(4)、求小数的倒数:把小数化为分数,再求倒数。3、1的倒数是1;因为1 1=1;0 没有倒数,因为0 乘任何数都得0,(分母不能为0)X k B
7、 1 .c o m 4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。5、运用,a 2/3=b 1/4 求 a 和 b 是多少。把a 2/3=b 1/4看成等于1,也就是求2/3的倒数和求1/4 的倒数。1、分数除法的意义:乘法:因数因数 =积4 除法:积一个因数=另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。例如:1/2 3/5 意义是:已知两个因数的积是1/2 与其中一个因数3/5,求另一个因数的运算。2、分数除法的计算法则:除以一个不为0 的数,等于乘这个数的倒数。3、分数除法比较大小时的规律:(1)当除数大于1,商小
8、于被除数;(2)当除数小于1(不等于0),商大于被除数;(3)当除数等于1,商等于被除数。“”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。二、分数除法解决问题1,解法:(1)方程:根据数量关系式设未知量为X,用方程解答。解:设未知量为X(一定要解设),再列方程用 X 分率=具体量例如:公鸡有20 只,是母鸡只数的1/3,母鸡有多少只。(单位一是母鸡只数,单位一未知.)解:设母鸡有X 只。列方程为:X 1/3=20(2)算术(用除法):单位“1”的量未知用除法:即已知单位“1”的几分之几是多少,求单位“1”的量。分率对应量对应分率=单位“1”的量例如
9、:公鸡有20 只,是母鸡只数的1/3,母鸡有多少只。(单位一是母鸡只数,单位一未知,)用除法,列式是:20 1/3 2、看分率前有没有比多或比少的问题;分率前是“多或少”的关系式:(比少):具体量(1-分率)=单位“1”的量;例如:桃树有50 棵,比苹果树少1/6,苹果树有多少棵。列式是:50(1-1/6)(比多):具体量 (1+分率)=单位“1”的量例如:一种商品现在是80 元,比原价增加了1/7,原价多少?列式是:80(1+1/7)3、求一个数是另一个数的几分之几是多少:用一个数除以另一个数,结果写为分数形式。例如:男生有20 人,女生有15 人,女生人数占男生人数的几分之几。列式是:15
10、 20=15/20=3/4 4、求一个数比另一个数多几分之几的方法:用两个数的相差量单位“1”的量 =分数即求一个数比另一个数多几分之几:用(大数小数)另一个数(比那个数就除以那个数),结果写为分数形式。例如:5 比 3 多几分之几?(5 3)3=2/3 求一个数比另一个数少几分之几:用(大数小数)另一个数(比那个数就除以那个数),结果写为分数形式。例如:3 比 5 少几分之几?(5 3)5=2/5 说明:多几分之几不等于少几分之几,因为单位一不同。5、工程问题:把工作总量看作单位“1”,合做多长时间完成一项工程用1效率和,即15(1/时间+1/时间),(工作效率=1/时间)例如:一项工程甲单
11、独做要5 天完成,乙单独做要10 天完成,甲单独做要3 天完成,三人合做几天可以完成?列式:1(1/5+1/10+1/3)第四单元比(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如 15:10=15 10=3/2(比值通常用分数表示,也可以用小数或整数表示)15 10 3/2 前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。例:长是宽的几倍。也可以表示两个不同量的比,得到一个新量。例:路程速度=时间。4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以
12、用分数表示。比值:相当于商,是一个数,可以是整数,分数,也可以是小数。5、根据分数与除法的关系,两个数的比也可以写成分数形式。6、比和除法、分数的联系:比前项比号“:”后项比值除法被除数除号“”除数商分数分子分数线“”分母分数值7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。8、根据比与除法、分数的关系,可以理解比的后项不能为0。9、体育比赛中出现两队的分是2:0 等,这只是一种记分的形式,不表示两个数相除的关系。10、求比值:用前项除以后项,结果最好是写为分数(不会约分的就不约分)例如:15 10 15 1015 103/2(二)、比的基本性质1、根据比、除法、分
13、数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0 除外),商不变。分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0 除外),分数值不变。比的基本性质:比的前项和后项同时乘或除以相同的数(0 除外),比值不变。2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。3、根据比的基本性质,可以把比化成最简单的整数比。4.化简比:(2)用求比值的方法。注意:最后结果要写成比的形式。例如:15 10=15 10=15 10 3/2=32 6 还可以15 10=15 10=3/2 最简整数比是3 2 5、比中有单位的,化简和求比值时要把单位化相同再化简和求比值
14、,结果没有单位。6.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法,用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。例如:有糖水25 克,糖和水的比为1:4,糖和水分别有几克?1+4=5 糖占 1/5 用 25 1/5 得到糖的数量,水占4/5 用 25 4/5 得到水的数量。2,用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。例如:有糖水25 克,糖和水的比为1:4,糖和水分别有几克?新 课标第一网糖和水的份数一共有1+4=5 一份就是25 5=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年部编版 小学 六年级 数学 上册 知识点 归纳 汇总
限制150内