《城市地铁盾构法区间隧道的设计.docx》由会员分享,可在线阅读,更多相关《城市地铁盾构法区间隧道的设计.docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、目录第一章 工程概况2第二章 工程地质和水文地质2第三章 隧道设计3第1节 主要设计标准3第2节 盾构隧道线路的拟合3第3节 管片构造形式5第4节 管片结构设计7第5节 管片防水设计8第6节 联络通道和洞门设计10第四章 结论与建议11第一章 工程概况越三区间属于广州地铁二号线工程的的北段,由越秀公园站火车站、火车站三元里站两个双孔区间隧道和两个联络通道及泵房组成。工程起于越秀区的地铁越秀公园站,向北下穿人民北路、环市西路到达地铁广州火车站;然后,线路从地下穿过广州火车站南站房等建筑群向西北延伸,最后下穿广花路到达地铁三元里站。区间全长3926 单线延米,曲线半径为600m 和400m 两种。
2、区间纵坡均为“v”形坡,最大坡度为30 ,最小竖曲线半径为3000m。线路沿线地形起伏较大,隧道最小覆土厚度为9m ,最大覆土厚度为26m。第二章 工程地质和水文地质区间的地层岩性在上部为:人工填土层,流塑软塑状淤积层,海陆交互淤积层,冲、洪积砂层,冲、洪积土层,残积土层。下部为:全风化、强风化、中等风化和微风化带的泥质粉砂岩。区间隧道穿越地层大部分是岩层, 少部分为残积土层和断裂破碎带。隧道所处的地层为上软下硬,软硬岩互层现象特征明显。本段地下水主要为第四系孔隙水和基岩裂隙水两种。第四系孔隙水主要赋存在淤泥质砂层和冲积洪积砂层内。基岩裂隙水多属承压水,但富水性较小,透水性多较弱。第三章 隧道
3、设计第1节 主要设计标准(1) 结构的安全等级为一级。(2) 区间隧道的抗震按7 度设计,人防按6 级考虑。(3) 防水标准:隧道整体为二级;隧道上半部A 级;隧道下半部、洞门及联络通道B 级。(4) 结构最大裂缝允许宽度: 管片内侧0. 3 mm , 外侧0. 2 mm。(5) 地表沉隆控制标准: - 30/ + 10mm;建筑物倾斜控制标准:框架结构2 ,砖混结构1. 5 。(6) 线形控制允差:设计拟合轴线与理论轴线允差10mm(个别情况允许为20mm) ;掘进轴线与设计轴线允差70mm。(7) 衬砌结构变形:直径变形1 D (D 为隧道外径) ;环缝张开 2mm;纵缝张开P拱部P边墙;
4、(2)对双线隧道,由于右线开挖影响,在仰拱部位,总的表现特征是仰拱右侧处的径向应力大于其左侧;(3)3A标段断面的径向应力较6标为大,原因为3A标设临时仰拱且断面下部分处于风化岩上,围岩变形相对较小,故由“地层-支护”特征曲线可知,其必然导致径向应力大;(4)在结构未封闭成环之前,拱部变形过大,实测应力值较小,随时间延长,初期支护结构刚度及强度提高,其支护抗力逐渐增大,反映为围岩施加于支护的径向应力也随之变大,这符合“地层-支护”特征曲线的原理;(5)拱部压力在下台阶开挖至断面里程时,开挖边墙前后的压力值产生了较大的改变。此时,拱顶压力增大,而两拱腰却稍有下降。随下半断面支护结构的施作,整体刚
5、度提高,拱部压力存在一个“平台”(压力大小不变)或“卸荷”(压力略有下降)现象,随整个支护结构的应力调整和再分配,拱部压力又重新进入一个缓慢增长直至稳定的过程;(6)边墙与仰拱处的压力变化趋势基本相同,不同的是断面封闭成环后,随着结构的逐步稳定,应力的调整和再分配,仰拱的压力值增长速率相对较大,从而使仰拱部位承受了较大的围岩压力。 4.2 孔隙水压力分布特征 孔隙水压力的历时曲线见图3。由图3以及在3A,3C标等的量测资料可知,孔隙水压力的分布特征为:(1)初期支护未封闭成环前,孔隙水压力随工作面推进有降低的趋势,表明工作面处的孔隙水压力为最小值,而随着断面的封闭,孔隙水压力逐渐增加,至一定值
6、后渐趋稳定;(2)拱顶部位孔隙水压力为负值,表明该处土体处于松驰状态,为剪性张拉区;(3)仰拱处的孔隙水压力为最大,其次为下台阶的右下侧和左下侧:(4)孔隙水压力分布与围岩径向应力分布特征基本类似。图3孔隙水压力的历时曲线 4.3 初期支护格栅钢架结构内力 由所测的格栅钢架主筋的截面轴力和弯矩的变化趋势通过结构简化而计算,见图4和5。 由图4,5可知,(1)在观测断面安装后7d(开挖工作面距测试断面1.39D),初期支护的上半断面轴力,在封闭后符号变异。封闭成环后,上、下断面的截面轴力有增加的趋势,然后呈稳定态势且拱部略有下降。(2)上半断面结构的轴力在刚安装时为压力,其后变为拉力。拱部轴力在
7、封闭成环后,变为压力,两拱腰也由受拉变为受压;下半断面左右两边墙以及仰拱两侧轴力均为压力,而在仰拱底处由开始的拉拉逐渐趋变为压力状态。上述特征与设计的整个结构断面皆受压不相一致。(3)结构所受弯矩的分布状态为:在封闭成环后,除仰拱部以及侧墙为内侧受拉外,其他实测的结果均与设计值不同。(4)相比较而言,上半断面承受了较大的轴力和弯矩,说明上半断面的支护结构为主要承受部位。图4初次支扩结构截面轴力变化趋势图5初次支护结构截面弯矩变化趋势 4.4 超前支护体应力 对超前小导管的应力分析采用拉(压)弯组合,以拱腰小导管为例,其拉(压)应变及弯曲应变在不同开挖长度时,实测应变沿小导管长度的变化趋势见图6
8、,7。图6小导管的拉、压应变的变化趋势图7小导管的弯曲应变的变化趋势 由图6,7及其他小导管的应变测试资料可得,超前支护小导管的应变变化特征为:(1)随工作面。开挖,超前支护体上沿全长皆有应力分布,小导管的工作状态是拉弯组合,即小导管在围岩荷载的作用下,产生弯曲的同时也伴随有拉伸。(2)随工作面推进,拉应力增加,其应变增量有向下一测点递增的趋势。(3)当工作面推进长度大于小导管长度时,尤其是上下台阶封闭成环后,小导管全部转化为受压,表明其超前作用消失。(4)由弯曲应变知,其承受地层上覆荷载的能力随小导管在土中剩余长度的减小而减小。因此设计时应该考虑,必须保证小导管在土中有一定的剩余长度。 4.
9、5 拱脚与土体的接触应力 对浅埋暗挖法,隧道拱脚处土体的承载力将直接影响隧道拱顶下沉。为寻求减缓拱顶下沉的拱脚处理措施,分别在左、右两拱脚安设了土压力盒。实测表明,拱脚处的接触应力远超过土体的基本承载力(实测值最大为814.2 kPa,而土体的基本承载力仅为260 kPa),倘不采取措施,必使拱顶下沉急剧增大,或者消极等待初期支护封闭成环后,才能使拱顶下沉变缓。 5浅埋隧道应力重分布的分区认识 实测的围岩径向应力与上覆土柱荷载的比值随隧道开挖而呈现的分布规律如图8的实线部分。而对工作面前方应力的分布状态,可利用超前支护的应力量测资料作推断。由本次超前小导管的现场量测资料可知,围岩压力产生的最大
10、应变点(应力集中峰值)距工作面的距离约为1.2m。文11)对超前支护体的数值模拟也表明:有预加固时,隧道工作面前方约25m处,其围岩径向力就等于原始地应力。若没有预加固,则此距离可远至工:作面前方15m。据此可绘出随工作面开挖,其前后应力的分布规律如图8(其中工作面前方应力分布(无测点线)为推断结果。L为推进长度,D为隧道宽度)。针对深圳地铁一期工程利用ANSYS有限元软件分析的隧道工作面前方围岩应力的分布特征见图9。由图9可知,其与上述实测和分析的规律一致。 上述隧道工作面围岩应力重分布的规律也已被模型试验所验证。文11)基于实验室试验,利用传感器所测的随工作面移动,拱顶上部围岩压力的分布规
11、律是:隧道推进时,在上覆地层中产生了“压力波形”。在工作面前方49m处,围岩中的应力与原始应力相比较,逐渐增加718。图8围岩压力与土柱荷载比值随开挖的分布规律图9工作面前方围岩应力分布特征 在工作面前24m处达到最大值,然后在工作面前方0.52.5m距离处降低到原始应力,并在已安装的衬砌处降到原始应力的4050。在工作面处为原始应力的7095。工作面通过一段距离后,围岩压力逐渐增加而接近原始应力。 基于实测以及上述分析,可提出浅埋城市地铁隧道工作面,沿隧道推进方向,其围岩应力分布可分3个区域,如图10。图10中, I为原始地应力区,为增压区,为应力降低区(减压区或卸荷区)。1为应力影响边界线,2为应力峰值线,3为卸荷边界线。 6结论 (1) 浅埋隧道拱顶处的围岩压力并不是设计的上覆土柱荷载。围岩压力排序为:P抑拱P拱部P边墙,因此浅埋隧道的仰拱结构设计应具特殊性。 (2) 实测孔隙水压力表明,拱部土体处于松驰状态,为剪性张拉区(膨胀),而仰拱处的孔隙水压力为最大,其分布特征与应力分布基本类似。20 / 20
限制150内