圆单元复习教案.docx
《圆单元复习教案.docx》由会员分享,可在线阅读,更多相关《圆单元复习教案.docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、全方位教学辅导教案 学科:数学 任课教师: 授课时间:姓 名性 别年 级总课时: 教 学内 容圆单元复习教 学目 标1掌握圆的有关概念和性质2了解点、直线和圆及圆的位置关系3掌握及圆有关的计算:弧长和扇形的面积,圆锥的侧面积和全面积重 点难 点掌握圆的有关概念和性质及圆有关的计算:弧长和扇形的面积,圆锥的侧面积和全面积教学过程课前检查及交流作业完成情况:交流及沟通:针对性授课知识框图:知识点一、圆的定义及有关概念1、圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。2、有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。圆上任意两点间的部分叫做圆弧,简称弧。
2、连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。在同圆或等圆中,能够重合的两条弧叫做等弧。例 P为O内一点,OP=3cm,O半径为5cm,则经过P点的最短弦长为_;最长弦长为_知识点二、圆的基本性质1圆是轴对称图形,其对称轴是任意一条过圆心的直线。2、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦对的弧。3、圆具有旋转对称性,特别的圆是中心对称图形,对称中心是圆心。圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。4、圆周角定理:一条弧所对的
3、圆周角等于它所对的圆心角的一半。圆周角定理推论:在同圆或等圆中,同弧或等弧所对的圆周角相等。圆周角定理推论:直径所对的圆周角是直角;的圆周角所对的弦是直径。例1 如图,在半径为5cm的O中,圆心O到弦AB的距离为3cm,则弦AB的长是( )A4cm B6cm C8cm D10cm例2、如图,A、B、C、D是O上的三点,BAC=30,则BOC的大小是( )A、60 B、45 C、30 D、15例3、(1)如图,ABC内接于O,AB为直径,CAEB,试说明AE及O相切于点A(2)在(1)中,若AB为非直径的弦,CAEB,AE还及O相切于点A吗?请说明理由知识点三、圆及三角形的关系1、不在同一条直线
4、上的三个点确定一个圆。2、三角形的外接圆:经过三角形三个顶点的圆。3、三角形的外心:三角形三边垂直平分线的交点,即三角形外接圆的圆心。4、三角形的内切圆:及三角形的三边都相切的圆。5、三角形的内心:三角形三条角平分线的交点,即三角形内切圆的圆心。例1 如图,通过防治“非典”,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图2449所示,A、B、C为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址例2 如图,点O是ABC的内切圆的圆心,若BAC=80,则BOC=( )A130
5、B100 C50 D65知识点四、平面内点和圆的位置关系平面内点和圆的位置关系有三种:点在圆外、点在圆上、点在圆内当点在圆外时,dr;反过来,当dr时,点在圆外。当点在圆上时,dr;反过来,当dr时,点在圆上。当点在圆内时,dr;反过来,当dr时,点在圆内。例 如图,在中,直角边,点,分别是,的中点,以点为圆心,的长为半径画圆,则点在圆A的_,点在圆A的_知识点五、直线和圆的位置关系:相交、相切、相离当直线和圆相交时,dr;反过来,当dr时,直线和圆相交。当直线和圆相切时,dr;反过来,当dr时,直线和圆相切。当直线和圆相离时,dr;反过来,当dr时,直线和圆相离。切线的性质定理:圆的切线垂直
6、于过切点的直径切线的判定定理:经过直径的一端,并且垂直于这条直径的直线是圆的切线。切线长:在经过圆外一点的圆的切线上,这点到切点之间的线段的长叫做这点到圆的切线长。切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和圆外这点的连线平分两条切线的夹角。例1如图,AB为O的直径,C是O上一点,D在AB的延长线上,且DCB=A(1)CD及O相切吗?如果相切,请你加以证明,如果不相切,请说明理由(2)若CD及O相切,且D=30,BD=10,求O的半径 知识点六、圆及圆的位置关系重点:两个圆的五种位置关系中的等价条件及它们的运用难点:探索两个圆之间的五种关系的等价条件及应用它们解题外离:两圆没
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 单元 复习 教案
限制150内