小升初知识点总结2.docx
《小升初知识点总结2.docx》由会员分享,可在线阅读,更多相关《小升初知识点总结2.docx(41页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、小升初知识点总结26486常用的数量关系式1、每份数X份数=总数总数+每份数=份数总数份数=每份数2、1倍数X倍数=儿倍数儿倍数+1倍数=倍数几倍数4倍数=1倍数3、速度X时间=路程路程+速度=时间路程时间=速度4、单价X数量=总价总价+单价=数量总价+数量=单价5、工作效率X工作时间=工作总量工作总量+工作效率=工作时间工作总量;工作时间=工作效率6、加数+加数=和和个加数=另一个加数7、被减数一减数=差被减数一差=减数差+减数=被减数8、因数X因数=积积4一个因数=另一个因数9、被除数+除数=商被除数+商=除数商X除数=被除数小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周
2、长=边长X4C=4a面积=边长X边长 S=aXa2、正方体(V:体积 a:棱长)表面积=棱长X棱长X65表=a*6体积=棱长X棱长X棱长V=a X a X a3、长方形(C:周长 S:面积 a:边长)周长=(长+宽)X2 C=2(a+b)面积=长乂宽 S=ab4、长方体(V:体积 s:面积 a:长 b:宽 h:高)(1)表面积(长X宽+长X高+宽X高)X2 S=2(ab+ah+bh)(2)体积=长乂宽*高 V=abh5、三角形(s:面积 a:底 h:高)面积=底义局42 s-ah4-2三角形图=面积X24底三角形底=面积X24-ij6、平行四边形(s:面积 a:底 h:高)面积=底乂高 s=a
3、h7、梯形(s:面积 a:上底 b:下底 h:高)面积=(上底+下底)X高4-2s=(a+b) X h4-28、圆形(S:面积 C:周长 Ji (1=直径 r=半径)周长=直径X ji =2X ji X半径 C=Jid=2r面积=半径X半径X ji9、圆柱体(v:体积 h:高 s:底面积r:底面半径c:底面周长)(1)侧面积=底面周长X高=(2 n r或Ji d)(2)表面积=侧面积+底面积X2(3)体积=底面积X高(4)体积=侧面积+2X半径10、圆锥体(v:体积 h:高 s:底面积r:底面半径)体积=底面积X高+312、和差问题的公式(和+差)+2 =大数13、和倍问题和+(倍数- 1)=
4、小数数)14、差倍问题差(倍数-1)=小数15、相遇问题11、总数+总份数=平均数(和一差)+2=小数小数X倍数=大数(或者和一小数=大小数X倍数=大数(或小数+差=大数)相遇路程=速度和X相遇时间相遇时间=相遇路程4-速度和速度和=相遇路程+相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量+溶液的重量X 100%=浓度溶液的重量x浓度=溶质的重量溶质的重量+浓度=溶液的重量17、利润与折扣问题利润=售出价一成本利润率=利润+成本X 100%=(售出价成本1) X 100%涨跌金额=本金X涨跌百分比利息=本金X利率X时间税后利息=本金X利率X时间X (120阶常用单位换算长度
5、单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:135781012月小月(30天)的有:46911月平年2月28天,闰年2月29
6、天平年全年365天,闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒基本概念第一章数和数的运算概念(一)整数1整数的意义自然数和。都是整数。2自然数我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。一个物体也没有,用0表示。0也是自然数。3计数单位一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。每相邻两个计数单位之间的进率都是10o这样的计数法叫做十进制计数法。4数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。5数的整除整数a除以整数b(b N 0),除得的商是整数而没有余数,我们就说 a能被b整除,或者说b能整除a o如果数a能被数b
7、(b #0)整除,a就叫做b的倍数,b就叫做a 的约数(或a的因数)。倍数和约数是相互依存的。因为35能被7整除,所以35是7的倍数,7是35的约数。一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是Wo一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12其中最小的倍数是3,没有最大的倍数。个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。一个数的各位上的数的和能被3整除,
8、这个数就能被3整除,例如:12、108、204都能被3整除。一个数各位数上的和能被9整除,这个数就能被9整除。能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。能被2整除的数叫做偶数。不能被2整除的数叫做奇数。0也是偶数。自然数按能否被2整除的特征
9、可分为奇数和偶数。一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3X5,3和5叫做15的质因数。把一个合数用质
10、因数相乘的形式表示出来,叫做分解质因数。例如把28分解质因数几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18o其中,1、2、3、6是12和18的公约数,6是它们的最大公约数。公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质。相邻的两个自然数互质。两个不同的质数互质。当合数不是质数的倍数时,这个合数和这个质数互质。两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。如果较小数是较大数的约数,那么较小数就是这
11、两个数的最大公约数。如果两个数是互质数,它们的最大公约数就是1。几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6、8、10、12、14、16、183的倍数有3、6、9、12、15、18其中6、12、18是2、3的公倍数,6是它们的最小公倍数。如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。(二)小数1小数的意义把整数1平均分成10份、100份、1000份得到的十分之几、百分之几、千分之几可以用小数表示。一位
12、小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10o2小数的分类纯小数:整数部分是零的小数,叫做纯小数。例如:0.25、0.368都是纯小数。带小数:整数部分不是零的小数,叫做带小数。例如:3.25、5.26都是带小数。有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3.0.23都是有
13、限小数。无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.333.1415926无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:n循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.5550.033312.109109一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99的循环节是“9” ,0.5454的循环节是“54” o纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。例如:3.1110.5656混循环小数:循环节不是从小数部分第一位开始的,叫做
14、混循环小数。3.12220.03333写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。例如:3.777简写作0.5302302简写作 o(三)分数1分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。2分数的分类真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子
15、比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。3约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。分子分母是互质数的分数,叫做最简分数。把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。(四)百分数1表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用犷来表示。百分号是表示百分数的符号。二方法(一)数的读法和写法1 .整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数
16、位连续有几个。都只读一个零。2 .整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。3 .小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。4 .小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。5 .分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。6 .分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。7 .百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数
17、的读法来读。8 .百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“”来表示。(二)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。1 .准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。例如把1254300000改写成以万做单位的数是125430万;改写成以亿做单位的数12.543亿。2 .近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:1302490015省略亿后面的尾数是1
18、3亿。3 .四舍五入法:要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略345900万后面的尾数约是35万。省略4725097420亿后面的尾数约是47亿。4 .大小比较1 .比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。2 .比较小数的大小:先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大3 .比较分数的
19、大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。(三)数的互化1 .小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。2 .分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。3 .一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。4 .小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。5 .百分数
20、化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。6 .分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。7 .百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。(四)数的整除1 .把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。2 .求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。3 .求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公
21、约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。4 .成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。(五)约分和通分约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。三性质和规律(-)商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。(二)小数的性质小数的性质:在小数
22、的末尾添上零或者去掉零小数的大小不变。(三)小数点位置的移动引起小数大小的变化1 .小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍2 .小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍3 .小数点向左移或者向右移位数不够时,要用“0”补足位。(四)分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。(五)分数与除法的关系1 .被除数除数=被除数/除数2 .因为零不能作除数,所以分数的分母
23、不能为零。3 .被除数相当于分子,除数相当于分母。四运算的意义(一)整数四则运算1整数加法:把两个数合并成一个数的运算叫做加法。在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。加数+加数=和一个加数=和一另一个加数2整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。加法和减法互为逆运算。3整数乘法:求几个相同加数的和的简便运算叫做乘法。在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。在乘法里,0和任何数相乘都得0.1和任何数相乘都
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小升初 知识点 总结
限制150内