生物化学-脂类与脂代谢-课件.ppt
《生物化学-脂类与脂代谢-课件.ppt》由会员分享,可在线阅读,更多相关《生物化学-脂类与脂代谢-课件.ppt(93页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第七章第七章 脂类与脂类代谢脂类与脂类代谢本章内容本章内容脂类脂类脂类脂类甘油三酯的分解代谢甘油三酯的分解代谢甘油三酯的分解代谢甘油三酯的分解代谢脂肪的生物合成脂肪的生物合成脂肪的生物合成脂肪的生物合成磷脂的代谢磷脂的代谢磷脂的代谢磷脂的代谢胆固醇的代谢胆固醇的代谢胆固醇的代谢胆固醇的代谢 脂类(脂类(lipidlipid)亦译为脂质或类脂,是一类低溶亦译为脂质或类脂,是一类低溶于水而高溶于非极性溶剂的生物有机分子。其于水而高溶于非极性溶剂的生物有机分子。其化学化学本质本质是脂肪酸和醇所形成的酯类及其衍生物。是脂肪酸和醇所形成的酯类及其衍生物。脂肪酸多为脂肪酸多为4 4碳以上的长链一元羧酸碳以
2、上的长链一元羧酸 醇成分包括甘油、鞘氨醇、高级一元醇和固醇。醇成分包括甘油、鞘氨醇、高级一元醇和固醇。脂类的元素组成主要是脂类的元素组成主要是C C、H H、O O,有些尚含有些尚含N N、S S、P P。一、定义一、定义:第一节 脂类参见参见P124构成脂类的脂肪酸:构成脂类的脂肪酸:参见表参见表5-1I 按化学组成分类单纯脂类复合脂类衍生脂类二、脂类的分类单纯脂类 由脂肪酸和醇类所形成的酯v 脂酰甘油酯(最丰富的为甘油三酯)v 蜡(含14-36个碳原子的饱和或不饱和脂肪酸与含16-30个碳原子的一元醇所形成的酯)参见参见P124单纯脂类的衍生物:除了含有脂肪酸和 醇外,还含有非脂分子的成分
3、,包括:复合脂类v磷脂(磷酸和含氮碱)v糖脂(糖)v硫脂(硫酸)参见参见P124可皂化脂类:一类能被碱水解而产生皂(脂肪酸盐)的脂类。不可皂化脂类:不能被碱水解而产生皂(脂肪酸盐)的脂类。主要有不含脂肪酸的萜类和固醇类。II 按能否被碱水解分类甘油三酯的分子结构三、重要脂类的结构 X X=胆碱、乙醇胺、胆碱、乙醇胺、丝氨酸、甘油丝氨酸、甘油 2.甘油磷脂X=H 磷脂酸磷脂酸(PA)参见表参见表5-2脂肪(甘油三酯,TG)脂类类脂磷酸甘油酯(PL)鞘磷脂脑苷脂神经节苷脂磷脂糖脂胆固醇(Ch)及其酯(ChE)第二节 甘油三酯的分解代谢参见参见P263二、甘油的氧化分解与转化 思考:思考:1 1分子
4、的甘油彻底氧化分子的甘油彻底氧化分解放出多少能量分解放出多少能量(形成(形成ATP?)ATP?)22 22 动物的脂肪细胞中动物的脂肪细胞中无甘油激酶,则甘油无甘油激酶,则甘油需要经血液运到肝细需要经血液运到肝细胞中进行氧化分解胞中进行氧化分解.v-氧化作用氧化作用v-氧化作用氧化作用饱和脂肪酸的氧化分解三 脂肪酸的氧化分解 不饱和脂肪酸的氧化分解奇数C原子脂肪酸的氧化分解概念脂肪酸的-氧化作用能量计算(一)饱和脂肪酸的-氧化作用饱和脂肪酸在一系列酶的作用下,羧基端的饱和脂肪酸在一系列酶的作用下,羧基端的位位C C原子发生氧化原子发生氧化,碳链在,碳链在位位C C原子与原子与位位C C原子间原
5、子间发生断裂,每次生成一个乙酰发生断裂,每次生成一个乙酰COACOA和较原来少二个碳单位的脂肪酸,这个不断和较原来少二个碳单位的脂肪酸,这个不断重复进行的脂肪酸氧化过程称为重复进行的脂肪酸氧化过程称为-氧化氧化.R1CH2CH2CH2CH2CH2COOH1.概念2.脂肪酸的-氧化作用(1)脂肪酸的活化脂肪酸首先在线粒体外或胞浆中被活化形成脂酰脂酰CoA,然后进入线粒体或在其它细胞器中进行氧化。在脂酰CoA合成酶(硫激酶)催化下,由ATP提供能量,将脂肪酸转变成脂酰CoA:脂酰CoA合成酶R-COOH AMP+PPiHSCoA+ATPR-COSCoA借助于两种肉碱脂酰转移酶同工酶(酶和酶)催化的
6、移换反应以及肉碱-脂酰肉碱转位酶催化的转运反应才能将胞液中产生的脂酰CoA转运进入线粒体。其中,肉碱脂酰转移酶(carnitineacyltransferase)是脂肪酸-氧化的关键酶。脂酰CoA进入线粒体的过程 胞液胞液胞液胞液 外膜外膜外膜外膜 内膜内膜内膜内膜 基质基质基质基质 *脂酰转脂酰转脂酰转脂酰转移酶移酶移酶移酶RCOSCoA HSCoA 肉碱肉碱RCO-肉碱肉碱 转位酶转位酶转位酶转位酶RCO-肉碱肉碱 脂酰转脂酰转脂酰转脂酰转移酶移酶移酶移酶RCOSCoA 肉碱肉碱HSCoA 参见参见P267-氧化过程由四个连续的酶促反应组成:脱氢水化再脱氢硫解(3)-氧化循环脱氢脱氢脂脂酰
7、酰CoA脱氢酶脱氢酶 R-CHR-CH2 2-CHCH2 2-CH-CH2 2-COSCoA-COSCoAFADFAD FADH2R-CHR-CH2 2-CH=CHCH=CH-COSCoA-COSCoA硫解硫解硫硫解解酶酶-2C-2CCHCH3 3-COSCoA-COSCoAHSCoAHSCoA水化水化水水化化酶酶 H H2 2OOR-CHR-CH2 2-CH(OH)-CHCH(OH)-CH2 2-COSCoA-COSCoA-氧化循环的反应过程(2反式烯脂酰反式烯脂酰COA)L-羟脂酰羟脂酰COA再脱氢再脱氢L-羟脂酰羟脂酰CoA脱氢酶脱氢酶R-CHR-CH2 2-CO-CHCO-CH2 2-
8、COSCoA-COSCoANADH+H+NADNAD+-酮脂酰酮脂酰COA生成的乙酰生成的乙酰CoACoA进入进入三羧酸循环三羧酸循环彻底氧化分彻底氧化分解并释放出大量能量,并生成解并释放出大量能量,并生成ATPATP。(4)彻底氧化:肉肉碱碱转转运运载载体体线线粒粒体体膜膜脂酰脂酰CoA脱氢酶脱氢酶L(+)-羟脂酰羟脂酰CoA脱氢酶脱氢酶 NAD+NADH+H+反反 2-烯酰烯酰CoA 水化酶水化酶H2OFADFADH2 酮脂酰酮脂酰CoA 硫解酶硫解酶CoA-SH脂酰脂酰CoA合成酶合成酶ATPCoASHAMP PPiH2O呼吸链呼吸链 1.5ATP H2O 呼吸链呼吸链 2.5ATP T
9、CA 1 1分子分子FADHFADH2 2可生成可生成1.51.5分子分子ATPATP,1 1分子分子NADHNADH可生成可生成2.52.5分子分子ATPATP,故一次,故一次-氧化氧化循环可生成循环可生成4 4分子分子ATPATP。1 1分子乙酰分子乙酰CoACoA经彻底氧化分解可生成经彻底氧化分解可生成1010分子分子ATPATP。3、脂肪酸氧化分解时的能量释放以以16C16C的的软脂酸软脂酸为例来计算,则生成为例来计算,则生成ATPATP的数的数目为:目为:7次次-氧化分解产生氧化分解产生47=28分子分子ATP;8分子乙酰分子乙酰CoA可得可得108=80分子分子ATP;共可得108
10、分子ATP,减去活化时消耗的两分子ATP,故软脂酸彻底氧化分解可净生成106分子ATP。对对于于任任一一偶偶数数碳碳原原子子的的长长链链脂脂肪肪酸酸,其其净净生生成成的的ATPATP数目可按下式计算:数目可按下式计算:4103.饱和脂肪酸的-氧化作用(自学)1.概念 脂肪酸脂肪酸在一些酶的催化下,其在一些酶的催化下,其-C-C原子发生氧原子发生氧化,结果生成一分子化,结果生成一分子COCO2 2和较原来少一个碳原和较原来少一个碳原子的脂肪酸,这种氧化作用称为子的脂肪酸,这种氧化作用称为-氧化氧化。RCHRCH2 2CHCH2 2 C COOH RCHOOH RCH2 2COOH+COOH+C
11、COO2 2参见参见P270vRCH2COOHO2,NADPH+H+单加氧酶单加氧酶Fe2+,抗坏血酸R-CH-COOHOH-(L-羟脂肪酸)NAD+NADH+H+脱脱氢氢酶酶R-C-COOHO=(-酮脂酸)ATP,NAD+,抗坏血酸脱羧酶脱羧酶RCOOH+CO2(少一个C原子)2.-氧化的可能反应历程 不饱和脂酸不饱和脂酸 3次次氧化氧化 顺顺 3-烯酰烯酰CoA顺顺 2-烯酰烯酰CoA 反反 2-烯酰烯酰CoA 3顺顺-2反烯酰反烯酰CoA 异构酶异构酶 氧化氧化 L(+)-羟脂酰羟脂酰CoA D(-)-羟脂酰羟脂酰CoA D(-)-羟脂酰羟脂酰CoA 表构酶表构酶H2O(二)不饱和脂肪酸
12、的氧化单不饱和脂肪酸的氧化单不饱和脂肪酸的氧化 如油酸如油酸(18C:1)(18C:1)参见参见P268多不饱和脂肪酸的氧化多不饱和脂肪酸的氧化 如亚油酸如亚油酸(18C:2)(18C:2)3D(-)L(+)L-甲基丙二酸单酰甲基丙二酸单酰CoA 消旋酶消旋酶 变位酶变位酶 5-脱氧腺苷钴胺素脱氧腺苷钴胺素 琥珀酰琥珀酰CoA 奇数碳脂肪酸奇数碳脂肪酸CH3CH2COCoA -氧氧化化 丙酰丙酰CoA羧化酶羧化酶(生物素)(生物素)ADP+PiD-甲基丙二酸单酰甲基丙二酸单酰CoA ATP+CO2经三羧酸循环途径经三羧酸循环途径丙酮酸羧化支路丙酮酸羧化支路糖有氧氧化途径彻底氧化分解糖有氧氧化途
13、径彻底氧化分解(三)奇数碳脂肪酸的氧化参见参见P269脂肪酸在肝中氧化分解所生成的乙酰乙酸(acetoacetate)、-羟丁酸(-hydroxybutyrate)和丙酮(acetone)三种中间代谢产物,统称为酮体(ketonebodies)。四、酮体的生成及利用(自学)参见参见P270-272酮体的分子结构CHCH3CHCOOH OH2D(-)-羟丁酸羟丁酸酮体酮体酮体主要在肝细胞线粒体中生成。酮体生成的原料为乙酰CoA。1酮体的生成(1)(1)两分子乙酰两分子乙酰CoACoA在乙酰乙酰在乙酰乙酰CoACoA硫解酶硫解酶(thiolase)(thiolase)的催化下,缩合生成一分子的催化
14、下,缩合生成一分子乙酰乙酰乙酰乙酰CoACoA。乙酰乙酰乙酰乙酰CoA硫解酶硫解酶2(乙酰乙酰CoA)酮体生成的反应过程(2)(2)乙酰乙酰乙酰乙酰CoACoA再与再与1 1分子乙酰分子乙酰CoACoA缩合,生成缩合,生成HMG-CoAHMG-CoA。HMG-CoAHMG-CoA合酶合酶是酮体生成的关键酶。是酮体生成的关键酶。HMG-CoA合酶合酶*CoASH 限速酶限速酶(3)HMG-CoA(3)HMG-CoA裂解生成裂解生成1 1分子乙酰乙酸和分子乙酰乙酸和1 1分子分子乙酰乙酰CoACoA。HMG-CoA裂解酶裂解酶(4)(4)乙酰乙酸在乙酰乙酸在-羟丁酸脱氢酶羟丁酸脱氢酶的催化下,加氢
15、还的催化下,加氢还原为原为-羟丁酸羟丁酸。-羟丁酸脱氢酶羟丁酸脱氢酶 NAD+NADH+H+(5)(5)乙酰乙酸自发脱羧或由酶催化脱羧生成乙酰乙酸自发脱羧或由酶催化脱羧生成丙丙酮酮。CO2CO2 CoASH CoASH NAD+NADH+H+-羟丁酸羟丁酸脱氢酶脱氢酶HMGCoA 合成酶合成酶乙酰乙酰乙酰乙酰CoA硫解酶硫解酶HMGCoA 裂解酶裂解酶 酮体的生成酮体的生成 -羟羟-甲基戊二酸单酰甲基戊二酸单酰CoA合成酶合成酶 利用酮体的酶有两种:1.琥珀酰CoA转硫酶(主主要要存存在在于于心心、肾肾、脑脑和和骨骨骼骼肌肌细细胞胞的的线线粒粒体体中)中)2.乙酰乙酸硫激酶(主要存在于(主要存
16、在于心、肾、脑细胞心、肾、脑细胞线粒体中)。线粒体中)。2酮体的利用(1)(1)-羟羟丁丁酸酸在在-羟羟丁丁酸酸脱脱氢氢酶酶的的催催化化下下脱脱氢氢,生成生成乙酰乙酸乙酰乙酸。酮体利用的基本过程-羟丁酸脱氢酶羟丁酸脱氢酶 NAD+NADH+H+(2)(2)乙酰乙酸在乙酰乙酸在琥珀酰琥珀酰CoACoA转硫酶转硫酶或或乙酰乙酸硫乙酰乙酸硫激酶激酶的催化下转变为乙酰乙酰的催化下转变为乙酰乙酰CoACoA。琥珀酰琥珀酰CoA转硫酶转硫酶琥珀酰琥珀酰CoA 琥珀酸琥珀酸 乙酰乙酸硫激酶乙酰乙酸硫激酶HSCoA+ATP AMP+PPi(3)(3)乙乙酰酰乙乙酰酰CoACoA在在乙乙酰酰乙乙酰酰CoACoA
17、硫硫解解酶酶的的催催化化下下,裂解为两分子乙酰裂解为两分子乙酰CoACoA。(4)(4)生成的乙酰生成的乙酰CoACoA进入进入三羧酸循环三羧酸循环彻底氧化分彻底氧化分解。解。乙酰乙酰乙酰乙酰CoA硫解酶硫解酶HSCoA 心、肾、脑、心、肾、脑、骨骼肌细胞骨骼肌细胞心、肾、心、肾、脑细胞脑细胞 羟丁酸羟丁酸-NAD+NADH+H HSCoA+ATP乙酰乙酸乙酰乙酸琥珀酰琥珀酰CoA乙酰乙酸硫激酶乙酰乙酸硫激酶琥珀酰琥珀酰CoA转硫酶转硫酶AMP+PPi乙酰乙酰乙酰乙酰CoA 琥珀酸琥珀酸硫解酶硫解酶2乙酰乙酰CoA三羧酸三羧酸循环循环+-羟丁酸脱氢酶羟丁酸脱氢酶当由当由琥珀酰琥珀酰CoACoA
18、转硫酶转硫酶催化进行氧化利用时,催化进行氧化利用时,乙乙酰乙酸酰乙酸可净生成可净生成2424分子分子ATPATP,-羟丁酸羟丁酸可净生成可净生成2727分子分子ATPATP;而由而由乙酰乙酸硫激酶乙酰乙酸硫激酶催化进行氧化利用时,催化进行氧化利用时,乙酰乙酰乙酸乙酸则可净生成则可净生成2222分子分子ATPATP,-羟丁酸羟丁酸可净生可净生成成2525分子分子ATPATP。(1)(1)在正常情况下,酮体是在正常情况下,酮体是肝输出能源肝输出能源的一种的一种重要的形式;重要的形式;(2)(2)在饥饿或疾病情况下,酮体可为心、脑等在饥饿或疾病情况下,酮体可为心、脑等重要器官重要器官提供必要的能源提
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 生物化学 代谢 课件
限制150内