《13第二章平稳随机过程课件.ppt》由会员分享,可在线阅读,更多相关《13第二章平稳随机过程课件.ppt(45页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二章:平稳随机过程v严平稳过程的定义严平稳过程的定义v宽平稳过程的定义宽平稳过程的定义v平稳过程的数字特征平稳过程的数字特征v平稳过程自相关函数的性质平稳过程自相关函数的性质v时间平均和集合平均的概念时间平均和集合平均的概念v平稳过程遍历性定义平稳过程遍历性定义v遍历性判定定理遍历性判定定理v遍历性应用举例遍历性应用举例 平稳随机过程是一类应用广泛的随机平稳随机过程是一类应用广泛的随机过程,在稳定系统中出现的随机过程都属过程,在稳定系统中出现的随机过程都属于平稳随机过程。于平稳随机过程。例如:纺织过程中棉纱横截面积的变例如:纺织过程中棉纱横截面积的变化;军舰在海浪中的颠簸;电阻的热噪声;化;
2、军舰在海浪中的颠簸;电阻的热噪声;物体长度的测量误差。物体长度的测量误差。与此相对的随机过程:通过某路口的与此相对的随机过程:通过某路口的车辆数量;股票的价格。车辆数量;股票的价格。这些随机现象的特点是:这些随机现象的特点是:统计特性不统计特性不随时间的推移而变化随时间的推移而变化。严平稳过程的定义 设设X(t),t T是随机过程,如果对任是随机过程,如果对任意常数意常数和正整数和正整数n n,t1,t2,tn T,t1+,t2+,tn+T,(X(t1),X(t2),X(tn)与与(X(t1+),X(t2+),X(tn+)有相同有相同的联合分布,则称的联合分布,则称X(t),t T为为严平稳过
3、严平稳过程程或或狭义平稳过程狭义平稳过程。严平稳过程的统计特征是由有限维分严平稳过程的统计特征是由有限维分布函数决定的,在实际应用中难以确定。布函数决定的,在实际应用中难以确定。均值均值 mX(t)=EX(t);均方值均方值 X(t)=EX2(t);方差方差 DX(t)=EX2(t)-E(X(t)2 =X(t)-mX2(t);自相关函数自相关函数 RX(t1,t2)=EX(t1)X(t2);协方差函数协方差函数 Cov(t1,t2)=RX(t1,t2)-mX(t1)mX(t2)平稳过程的数字特征平稳过程的数字特征对于平稳随机过程对于平稳随机过程X(t)的一维分布的一维分布F1(X1;t1)=F
4、1(X1;t1+),若令,若令=-t1,则,则F1(X1;t1)=F1(X1;0)=F1(X1)(1)因此平稳随机过程的因此平稳随机过程的一维分布函数与时间无一维分布函数与时间无关关,其在任何时刻的统计规律相等。,其在任何时刻的统计规律相等。(2)若随机过程若随机过程X(t)平稳过程,则其平稳过程,则其均值均值、均方值均方值和和方差方差均为常数。均为常数。(3)对于平稳随机过程对于平稳随机过程X(t)的二维分布的二维分布F2(X1,X2;t1,t2)=F2(X1,X2;t1+,t2+),若令,若令=-t1,则,则F2(X1,X2;t1,t2)=F2(X1,X2;0,t2-t1),令,令t2-t
5、1=,则:则:F F2 2(X(X1 1,X,X2 2;t;t1 1,t,t2 2)=F)=F2 2(X(X1 1,X,X2 2;)(4)平稳过程的自相关函数是平稳过程的自相关函数是时间时间的单变量函的单变量函数数。同理,协方差函数是同理,协方差函数是时间时间的单变量函数的单变量函数严平稳过程和宽平稳过程的关系严平稳过程和宽平稳过程的关系 (1)宽平稳过程不一定是严平稳过程)宽平稳过程不一定是严平稳过程 (2)严平稳过程只有当二阶矩存在时)严平稳过程只有当二阶矩存在时为宽平稳过程为宽平稳过程 (3)但是对于)但是对于正态过程正态过程,其分布由均,其分布由均值和自相关函数完全确定,二者是等价的。
6、值和自相关函数完全确定,二者是等价的。例题3:设设S(t)是一周期为是一周期为T的实值连续函数,的实值连续函数,在在(0,T)(0,T)上均匀分布,称上均匀分布,称X(t)=S(t+X(t)=S(t+)为为随机相位周期过程,讨论其平稳性。随机相位周期过程,讨论其平稳性。联合平稳过程联合平稳过程设设X(t),t T和和Y(t),t T是是两个平稳过程两个平稳过程,若它们的互相关函数若它们的互相关函数和和 仅与仅与有关,而与有关,而与t t无无关,则称关,则称X(t)X(t)和和Y(t)Y(t)是是联合平稳随机过联合平稳随机过程程。当两个平稳过程当两个平稳过程X(t),Y(t)是联合平是联合平稳时
7、,则稳时,则它们的和也是平稳过程它们的和也是平稳过程。设设x(t),tT为平稳过程,则其相关函数为平稳过程,则其相关函数具有下列性质:具有下列性质:(1)(2)(3)平稳过程自相关函数的性质平稳过程自相关函数的性质(4)若若X(t)是周期为是周期为T的周期函数,即的周期函数,即 X(t)=X(t+T),则,则RX()=RX(+T+T);(5)若若X(t)是不含周期分量的非周期过程,是不含周期分量的非周期过程,当当|时,时,X(t)与与X(t+)相互独立,则相互独立,则平稳过程自相关函数的性质平稳过程自相关函数的性质 已知平稳随机过程的自相关函数为已知平稳随机过程的自相关函数为:求其均值和方差求
8、其均值和方差.习题:习题:处处收敛处处收敛 对于概率空间(,F,P)上的随机序列Xn每个试验结果e都对应一序列,如果该序列对每个e都收敛,则称随机序列Xn处处处收敛处收敛,即满足其中,x为随机变量。以概率以概率1收敛收敛二阶矩随机序列二阶矩随机序列Xn(e),二阶矩随机变量二阶矩随机变量X(e),若若称称Xn(e)以概率以概率1收敛于收敛于随机变量随机变量X,或称,或称Xn(e)几乎处处收敛于几乎处处收敛于X(e),记作,记作设有二阶矩随机序列Xn和二阶矩随机变量X,若有成立,则称Xn均方收敛于X,记作:(Mean-square收敛)均方收敛均方收敛 二阶矩随机序列Xn相应的分布函数为Fn(x
9、),二阶矩随机变量X对应的分布函数为F(x).若对F(x)的每一个连续点处,有记作 称二阶矩随机序列Xn依分布收敛于二阶矩随机变量X,(Distribution 收敛)依分布收敛依分布收敛(1)若若 ,则则证:举例举例:(2)若若 ,则则证:举例举例:均方连续均方连续定义定义6.6设有二阶矩过程设有二阶矩过程X(t),tT,若对每一个,若对每一个tT,有,有则称则称X(t)在在t点均方连续,记作点均方连续,记作若若T中一切点都均方连续,则称中一切点都均方连续,则称Xt在在T上均方连续上均方连续。均方积分均方积分定义6.8设X(t),tT为二阶矩过程,f(t)为普通函数,其中T=a,b,如果当n
10、0时,Sn均方收敛于S,即则称f(t)X(t)在区间a,b上均方可积,记作定理6.8设f(t)X(t)在区间a,b上均方可积,则有1.2.2.结论:若均方可积,数学期望和积分可以交换秩序。定理6.9设X(t),tT为二阶矩过程在区间a,b上均方连续,则 在均方意义下存在,且随机过程Y(t),tT在区间a,b上均方可微均方可微,且有Y(t)=X(t)。时间平均和集合平均概念集合平均mX是随机过程的均值,即任意时刻的过程取值是随机过程的均值,即任意时刻的过程取值的统计平均。的统计平均。时间平均是随机过程的样本函数按不同时刻取平均,它随是随机过程的样本函数按不同时刻取平均,它随样本不同而不同,是个随
11、机变量。样本不同而不同,是个随机变量。时间平均集合平均大数定理大数定理设独立同分布的随机变量序列Xn,n=1,2,,具有EXn=m,DXn=2,(n=1,2,),则 随时间随时间n的无限增长,随机过程的的无限增长,随机过程的样本函数样本函数按时间平均按时间平均以越来越大的概率近似于该过程的以越来越大的概率近似于该过程的统计平均统计平均。也就是说,只要观测的时间足够长,。也就是说,只要观测的时间足够长,则随机过程的每个样本函数都能够则随机过程的每个样本函数都能够“遍历遍历”各各种可能的状态。种可能的状态。例题:随机过程随机过程X(t)=acos(wt+),a,w为常为常数,数,为为(0,2(0,
12、2)上均匀分布的随机变量,上均匀分布的随机变量,试分析试分析X(t)X(t)集合平均和时间平均值、相集合平均和时间平均值、相关函数和时间相关函数。关函数和时间相关函数。定义6.10设设X(t),-t是均方连续的平稳过程,是均方连续的平稳过程,若若以以概率概率1成立,则称该平稳过程的成立,则称该平稳过程的均值具有均值具有各态历经性各态历经性。若。若以以概率概率1成立,则称该平稳过程的成立,则称该平稳过程的相关函数相关函数具有各态历经性具有各态历经性。定义6.11 如果均方连续的平稳过程如果均方连续的平稳过程X(t),tT的均值和相关函数都具有各的均值和相关函数都具有各态历经性,则称该平稳过程为具
13、有态历经性,则称该平稳过程为具有各态各态历经性历经性或或遍历性遍历性。定理6.10设X(t),-t是均方连续的平稳过程,则它的均值具有各态历经性的充要条件为证明见课本定理6.11设X(t),-t是均方连续的平稳过程,则其相关函数具有各态历经性的充要条件为其中证明见课本 要严格验证平稳过程是否满足各态历经性是比较困难的,但是各态历经性定理的条件较宽,工程中所遇到的平稳过程大多数都能满足.在实际应用中,只考虑 上的均方连续的平稳过程,此时:各态历经定理的意义:一个实平稳过程,如果它是各态历经的,则可用任意一个样本函数的时间平均代替过程的集合平均,即若样本函数X(t)只在有限区间0,T上给出,则对于实平稳过程有下列估计式举例:测量具有各态历经性随机过程的均值举例:利用相关法进行弱信号检测 雷雷达达接接收收机机的的输输出出既既存存在在着着周周期期性性的的回回波波信信号号s(t),又又存存在在着着随随机机噪噪声声n(t),如如何何在在噪噪声背景下识别是否有周期信号的存在声背景下识别是否有周期信号的存在?(假设s(t),n(t)都是均值为零的各态历经的平稳过程都是均值为零的各态历经的平稳过程)作业:6.1 6.2 6.8 6.12
限制150内